Heat Forecasting

Advancing our Capabilities and Knowing our Limitations

Global Heat Health Forum – Hong Kong December 18, 2018

Melissa MacDonald

Health and Air Quality Program Meteorologist

Health and Air Quality Forecast Services

Meteorological Service of Canada (MSC)

Environment and Climate Change Canada (ECCC)

Overview

- Heat Forecasting Observations and Local Effects
- Heat Indices and Thresholds
- Scale Spatial and Temporal
- Forecast Models
 - Deterministic, Probabilistic, Ensemble Prediction Systems
 - Other Modeling Advances
- Sector Specific Heat Forecasting
- Canada's Heat Warning Modernization experience

Heat Forecasting

Observation

- Ground Based Methods
 - Data Source
 - Type of observation
- Satellite Based Methods
 - Advanced Very-High Resolution Radiometer (AVHRR)
 - Limited Observations (Sea Surface Temperature, Arctic)
 - Limitations: cloud-free conditions, resolution, frequency of observations

Local Effects

- Geography/Topography
- Bodies of Water
- Climatology
- Urban vs. Rural environment
 - Urban Heat Island (UHI)
 - Population distribution and available services

MODIS

Landsat

Heat – Indices and Thresholds

- Heat Indices "Feels Like Temperature"
 - Various forms using multiple parameters:
 - Air Temperature, Humidity, Wind, Solar Radiation
 - Global variation and sector specific

- Epidemiology health evidence
- Warning Fatigue
- Operationalization balance of forecasting resources and capabilities
- Partner requirements

Type of Threshold

- Temperature or Index based, combination?
- Overnight component no relief from heat?
- Duration considerations
- Tiered System (action, different populations, early/late season criteria)

Scale

Spatial

- Area of coverage vs. resource availability
 - Population density
 - Funding Resources (travel, maintenance)
 - Effects Weather Observation Networks and Forecast Production

Temporal

- Day 1 vs. Day 2 Forecast
- Early Notification vs. Uncertainty
- Duration vs Extreme Single Day Event

Forecast Models

- Deterministic
 - Initial Conditions + Physics = a single accurate forecast
 - Forecasters want to create a perfect deterministic forecast
- Error and Uncertainty
 - Initial Conditions (Observations)
 - Initialization (interpolation, assimilation)
 - Model Error

- Probabilistic
 - Complete set of various solutions with probability = probability forecast
 - We need to learn how to weigh the probability appropriately

Ensemble Prediction Systems (EPS)

- EPS simulate the inherent uncertainties in weather models
- Resolution decreased to balance computational needs and time
- Ensemble mean can be considered as the deterministic solution
 - Smaller spread = deterministic solution may be reliable
 - Larger spread = deterministic solution may be more unreliable
- Different Ensemble Prediction Systems
 - Different versions of the same model.
 - Different versions of the initial conditions.

HALIFAX INTL.A. (YHZ) 44.88 N 63.52 W/O

Other Modelling Advances

- Developments in High Resolution modeling
 - Urban Heat Island effect
 - Urban planning processes (City greening, canopy)
- Modelling Thermal Comfort Indices (Canada)
 - Development in preparation of the 2015 PanAm Games
 - Humidex, Wind Chill, UTCI, WBGT
 - Evaluated using the denser PanAm Games Mesonet
- HeatRisk Product (US) Identify Potential Heat Risks

Experimental, gives forecasts a climatological context based on

location & time of year.

Sector Specific Heat Forecasting

- Various Sectors, various needs:
 - Health Partners
 - Emergency Management
 - Infrastructure
 - Mass Gathering Events
 - Public
 - Vulnerability Groups

Canada's Heat Warning Modernization

Heat-health analysis by Health Canada

OR

95th Percentile guidance

Criteria Decisions:

- Duration
- Relief from heat overnight
- T_a, best modelled predictor

Why

- Single national climatological based criteria
- Recent heat-related mortality and Public Health interest in communicating heat risk and reducing those risks (HeatAlertResponseSystem)

Engagement

Partnership with Health Canada and Public Health

Results

- An evidence based heat warnings service
- Coherent communications
- Part of a chain of actions to reduce heat-health risk
- Early Notification system to support partners' needs

Development Considerations

- Warning Fatigue
- Operationalization balance of forecasting resources with partner demand
- Communicating the changes to the public and partners
- Developing a National Standard level of service
- Integrating the system into current HARS

Question Time

Thank you!

Melissa MacDonald
Health and AQ Program Meteorologist
Health and Air Quality Forecast Services
Meteorological Service of Canada
Environment and Climate Change Canada
1-902-426-8806
melissa.macdonald@canada.ca