Communicating for Heat Action

Perspectives on Communicating Risk from a Doctor

Dr Yu Fat Chow, Executive Committee
Hong Kong Jockey Club Disaster Preparedness and Response Institute
/World Association of Family Doctors
Mild and Moderate Heat Illnesses

Heat rash
Heat edema
Heat cramps
Heat syncope
Heat Exhaustion / Heat Stroke

- **Heat Exhaustion**: giddiness, headache, nausea, shortness of breath, mental confusion
- **Heat Stroke**: body temp > 41, convulsion, unconscious, rhabdomyolysis, multiorgan failure
Who is at Risk?

- The obese
- The sick
- The elderly
- The psychiatric patients
- The children
- The socially isolated
Recommendations for the Public

Keep your home cool
Keep out of heat
Keep the body cool and hydrated
Help others
If you have a health problem...
If you or other feel unwell...
• Understand thermoregulatory and haemodynamic response to heat
• Understand heat illnesses esp heat stroke
• Initiate proper cooling and resuscitation
• Identify vulnerable groups and encourage proper education and counselling
• Beware of side effects / efficacy of medications during hot weather
• Monitor drug therapy and fluid intake
Heat Action Plan: Key Perspectives

- Accurate and timely alert system
- Heat related health information plan: what, who and when
- Particular care to vulnerable groups
- Preparedness of health and social care system
- Reduction in indoor heat exposure
- Real time surveillance and evaluation
- Agreement on a lead body
- Long term urban planning
Resurgence of Infectious Diseases

- Climate change and pathogens
- Climate change and hosts / vectors
- Climate change and transmission

Diseases: dengue, malaria, hantavirus and cholera, salmonellosis, giardiasis

Seasonal / geographical distribution
Outbreak frequency and severity
<table>
<thead>
<tr>
<th>Extreme weather events</th>
<th>Disease type</th>
<th>Authors, year</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Nino</td>
<td>Vector-borne disease</td>
<td>Epstein (1999)</td>
<td>Increasing outbreaks of emerging diseases were linked to El Nino event. Outbreaks and epidemic of malaria were positively connected with El Nino events in many regions.</td>
</tr>
<tr>
<td></td>
<td>Water-borne disease</td>
<td>Lindsay et al. (2000)</td>
<td>Strikingly less malaria were found in the El Nino year than in the preceding year in the Usambara Mountains, Tanzania.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hjelle and Glass (2000)</td>
<td>Record of hantavirus cardiopulmonary syndrome has been found to be related to El Nino events in the Colorado Plateau.</td>
</tr>
<tr>
<td>La Nina</td>
<td>Vector-borne disease</td>
<td>Chretien et al. (2007)</td>
<td>Chikungunya fever epidemic was connected with the drought incurred by La Nina.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nicholas (1993)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water-borne disease</td>
<td>Bunyavirical (2003)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vector-borne disease</td>
<td>Dwight et al. (2004)</td>
<td></td>
</tr>
<tr>
<td>Quasi-Biennial Oscillation (QBO)</td>
<td>Water-borne disease</td>
<td>QBO has been found to be linked to the incidence of Ross River virus in south-eastern Queensland.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air-borne disease</td>
<td>Kan (2011)</td>
<td>Heatwave contributes to the increased morbidity and mortality from infectious respiratory diseases.</td>
</tr>
<tr>
<td>Drought</td>
<td>Water-borne disease</td>
<td>Epstein (2001a)</td>
<td>Diarrheal diseases are frequent during drought especially in refugee camps.</td>
</tr>
<tr>
<td></td>
<td>Vector-borne disease</td>
<td>Khasnis and Netzleman (2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wang et al. (2010)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shaman et al. (2002)</td>
<td></td>
</tr>
<tr>
<td>Flood</td>
<td>Water-borne disease</td>
<td>Chretien et al. (2007)</td>
<td>The Chikungunya fever epidemic may be associated with droughts.</td>
</tr>
<tr>
<td></td>
<td>Vector-borne disease</td>
<td>Mackenzie et al. (1994)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reacher et al. (2004)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nielsen et al. (2002)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cordova et al. (2000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chen (1999)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CDC (2000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leal-Castellanos et al. (2003)</td>
<td></td>
</tr>
<tr>
<td>Hurricane</td>
<td>Vector-borne disease</td>
<td>Epstein (2000)</td>
<td>Following the hurricane, malaria and dengue fever occurred in Honduras and in Venezuela.</td>
</tr>
<tr>
<td></td>
<td>Vector-borne disease</td>
<td>Sanders et al. (1999)</td>
<td>A cyclone tends to increase the incidence of leptospirosis.</td>
</tr>
<tr>
<td></td>
<td>Water/blood-borne disease</td>
<td>Shultz et al. (2005)</td>
<td>A cyclone tends to increase the incidence of cholera.</td>
</tr>
</tbody>
</table>

The table includes empirical findings published after the 1990s.
HKJC DPRI
Hong Kong Jockey Club Disaster Preparedness and Response Institute
http://www.hkjcdpri.org.hk/
HKJC DPRI: The Hong Kong Jockey Club Disaster Preparedness and Response Institute

- setup in 2014, funded by HKJC
- capacity building on disaster preparedness and response
- participatory, collaborative
- locally, regionally and globally
- policy, research and practice

HKU, CUHK, UST, Manchester Uni, Harvard Uni

Mainland China

WHO
Hong Kong’s Emergency and Disaster Response System

Emily YY CHAN, May PS YEUNG, Sharon TT LO
Collaborating Centre for Oxford University and CUHK for Disaster and Medical Humanitarian Response (CCOUC), The Chinese University of Hong Kong

Policy Brief
October 2015

Policy Implication of Health Impacts of Climate Change in Hong Kong

Emily YY CHAN, Heidi HUNG, Gabriel NC LAU, Edward YY NG
Collaborating Centre for Oxford University and CUHK for Disaster and Medical Humanitarian Response (CCOUC), The Chinese University of Hong Kong
Institute of Environment, Energy and Sustainability (IEES), The Chinese University of Hong Kong

Policy Brief
October 2016
Landslide

Smart Landslide Barrier

Smart Landslide Information System

Figure 1. Global interface of LIS mobile app on smartphone
Thank You