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A B S T R A C T

Many studies have explored the impact of extreme heat on health, but few have investigated localized heat-
health outcomes across a wide area. We examined fine-scale variability in vulnerable areas, considering popu-
lation distribution, local weather, and landscape characteristics. Using 36 different heat event definitions, we
identified the most dangerous types of heat events based on minimum, maximum, and diurnal temperatures with
varying thresholds and durations. Focusing on California’s diverse climate, elevation, and population distribu-
tion, we analyzed hospital admissions for various causes of admission (2004–2013). Our matching approach
identified vulnerable zip codes, even with small populations, on absolute and relative scales. Bayesian Hierar-
chical models leveraged spatial correlation. We ranked the 36 heat event types by attributable hospital admis-
sions per zip code and provided code, simulated data, and an interactive web app for reproducibility. Our
findings showed high variation in heat-related hospitalizations in coastal cities and substantial heat burdens in
the Central Valley. Diurnal heat events had the greatest impact in the Central Valley, while nighttime extreme
heat events drove burdens in the southeastern desert. This spatially informed approach guides local policies,
prioritizing dangerous heat events to reduce the heat-health burden. The methodology is applicable to other
regions, informing early warning systems and characterizing extreme heat impacts.
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1. Introduction

Extreme heat events result in the highest number of weather-related
deaths in the US and globally, more than any other weather-related
disaster (Nitschke et al., 2011; Robine et al., 2012; Ebi et al., 2021;
Cole et al., 2023). Many epidemiological studies have found that
extreme heat events (EHE) increased the risk of hospitalization for many
diagnoses including hospitalizations from cardiovascular, respiratory,
diabetes, fluid and electrolyte disorders, and renal failure(Vaidyanathan
et al., 2019; Achebak et al., 2024). However, EHEs do not affect pop-
ulations equally, and some communities are more vulnerable to heat

(Smargiassi et al., 2009; Benmarhnia et al., 2015; Schinasi et al., 2018;
Guo et al., 2023). Health risks associated with heat can vary across space
(Vaneckova et al., 2010; Hondula et al., 2012; Hondula and Barnett,
2014; Benmarhnia et al., 2017), including within cities or counties
(McElroy et al., 2020). Identifying such spatial heterogeneity in the
impacts of EHEs can be particularly useful for targeting vulnerable areas
and communities as well as to guide early warning systems that can
greatly reduce the health impacts of extreme heat. However, studying
the spatial heterogeneity of the effects of extreme heat requires impor-
tant methodological considerations, including the handling of spatial
information, the classification of extreme heat events, and the scale of
estimated effects.

In addition, communities may be differentially impacted by various
types, or “flavors”, of EHEs (Anderson and Bell, 2011). There is no
standardized way to classify heat events. For example, EHEs can be
defined using different temperature metrics, such as minimum,
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maximum, or diurnal temperature (representing the nighttime-daytime
difference). Additionally, various lengths of heat exposure (single day
versus multi-day heat events) may be considered. Finally, different
percentile thresholds (e.g., 95th, 99th etc.) can be used to define extreme
heat events. While it is expected that higher thresholds are associated
with higher risks of hospital admission (on a relative scale), such events
are less frequent (McElroy et al., 2020). Therefore, taking the occurrence
of such extreme heat events into consideration is critical when esti-
mating the total burden on the absolute scale (i.e., the total number of
attributable hospitalizations) associated with different heat events
(McElroy et al., 2020).

Moreover, while it is important to quantify spatial variation in the
risks associated with heat on a relative scale (expressed through risk
ratios or standardized mortality ratios for instance), it is also critical to
quantify such risk on an absolute scale in terms of number of cases
attributable to extreme heat (Gasparrini et al., 2015; Vaidyanathan
et al., 2019). The relative scale allows us to see where people are more
(or less) vulnerable to heat, whereas the absolute scale determines
where the greatest number of people affected reside. These two scales
can complement one another in the process of designing adaptation
strategies. The absolute scale allows governments to design policies that
proportionately target those areas with the highest burden to reduce the
total number of hospitalizations due to heat. The relative scale allows
policymakers to identify areas composed of vulnerable populations that
are not typically emphasized in studies focusing on the state or county
levels or when using traditional spatiotemporal methods. An additional
challenge when assessing the fine-scale spatial variability of heat im-
pacts is related to the precision of estimates. We propose a novel
within-community matched design coupled with a Bayesian Hierarchi-
cal Model (Aguilera et al., 2020; Schwarz et al., 2021; Chen et al., 2024)
to analyze spatio-temporal impacts of various EHEs at a fine scale.

Spatial heterogeneity in the type of heat events that drive the health
burden can be notably explained by differences in population compo-
sition (Hondula and Barnett, 2014; Benmarhnia et al., 2017), local
meteorological conditions (Guirguis et al., 2018), or landscape charac-
teristics (Schinasi et al., 2018; Chakraborty et al., 2023). California
constitutes an ideal region to study the spatial variation of the impact of
heat on hospital admissions due to the high burden, high variation in
population distribution, and high variance in climate throughout the
state (Gershunov and Guirguis, 2012). Heat-related health impacts are
well studied in California (Ostro et al., 2009; Sherbakov et al., 2018;
Fard et al., 2023); however, to the best of our knowledge, there is no
small region spatial estimation or statewide estimate of spatial vari-
ability of heat-related health impact across California.

We applied a comprehensive spatio-temporal approach, an extension
of a within-community matched design, to study the spatial variability
in the health impacts of heat events in California for unplanned hospi-
talizations for cardiovascular disease (CVD), respiratory disease, acute
renal failure, dehydration, and heat illness. We extended this method-
ology by using Bayesian models to account for spatial autocorrelation,
improve precision, and explore what drives small-scale impacts to
extreme heat including the heat metric, heat event length, and heat
event intensity. Identifying what heat event characteristics drive the
greatest health burden on the relative and absolute scale can be used to
prioritize specific areas and neighborhoods in policy planning to best
protect populations from the effects of extreme heat.

2. Methods

2.1. Hospitalization data

We obtained all unscheduled hospitalization data in California for
the years 2004–2013 from the Office of Statewide Health Planning and
Development (OSHPD). The following primary diagnoses were evalu-
ated, as listed in the International Classification of Disease codes, 9th
Revision, Clinical Modification (ICD-9): acute myocardial infarction

(MI) (410), acute renal failure (584), cardiac dysrhythmias (427), CVD
(390–459), dehydration/volume depletion (276.5), essential hyperten-
sion (401), heat illness (992), ischemic heart disease (410–414),
ischemic stroke (433–436), and all respiratory diseases (460–519).
These diseases were chosen because they have previously been linked to
extreme temperatures (Sherbakov et al., 2018; Vaidyanathan et al.,
2019). For this analysis, all cardiovascular hospitalizations were
grouped, leaving five hospitalization outcomes of interest. Data were
aggregated into daily counts for each zip code. Zip code population data
was obtained from the 2010 US Census and was mapped using Zip Code
Tabulation Areas (ZCTAs). Climate regions in California are presented in
Supplemental Fig. A1 and Population by zip code is presented in Fig. A2.
We focused on unscheduled hospital admissions and emergency
department visits data as there is robust evidence linking extreme heat
with hospital admissions and emergency department visits but also
because, for planning purposes, preventing heat-related morbidity will
guarantee wider benefits than focusing on mortality outcomes.

2.2. Meteorological data and extreme heat events definition

Temperature data were downloaded from a publicly available
dataset that collects weather data from National Oceanic and Atmo-
spheric Administration Cooperative Observer Program (NOAA COOP)
stations across the US and provides data at a gridded level (https://cal-a
dapt.org/). Daily maximum and minimum temperatures (◦C) were
derived from 1/16◦ (~6 km) gridded observed data from this dataset for
all of California (Livneh et al., 2013). Population-weighted centroids for
each ZCTA were linked to the nearest temperature measurements using
the geonear function in Stata15 SE. Population data, including
population-weighted centroids, were obtained from the 2010 US census.

There are many possible definitions for a heat event as evidenced by
warning systems across the world. In this study, we considered 36
distinct EHE definitions based on zip code-specific temperature distri-
butions. These include different metrics: heat index, maximum and
minimum temperatures, and the difference between the maximum and
minimum temperature for each day (i.e., diurnal temperature). We then
considered duration as either 1, 2, or 3 days of heat exposure. Finally, we
considered temperature extremity by including the 95th, 97.5th, and
99th percentiles for minimum and maximum temperatures and 1st,
2.5th, and 5th percentiles for diurnal temperatures. The 36 EHE defi-
nitions are all the possible combinations of the above factors. As an
example, consider a 95th percentile maximum temperature, 1-day
event. An EHE day is defined as one in which the daily maximum tem-
perature is greater than or equal to the 95th percentile of the distribution
of maximum temperatures during the warm season (May–September)
for each zip code. The observed temperature threshold for this EHE is
displayed in Fig. 1 in degrees Celsius. Fig. 1 displays temperatures for
the four main geographic regions in California, showing that the Central
Valley and southeastern desert are warmer, and the coast and eastern
mountain ranges are generally cooler. The same procedure is applied to
all 36 different EHE definitions.

2.3. Data analysis

2.3.1. The spatial within-community matched design
We used a spatio-temporal approach, which can be described as a

spatial within-community temporally matched design (Goin et al.,
2019). We have applied this approach to other environmental exposures
in previous work (Aguilera et al., 2020; Schwarz et al., 2021; Chen et al.,
2024; Do et al., 2024). This approach allows us to control for any
time-fixed, measured, or unmeasured confounders at the zip code level.
Our approach includes four sequential steps to quantify the heat impacts
on both relative and absolute scales. A schematic of this approach can be
found in Fig. 2. First, we adopted a procedure to match EHE days in each
zip code to similar non-EHE days (i.e., days without a heat event and
within the same calendar year and day of the week), and we produced a
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contrast from a weighted average based on distance in time from the
EHE day, given that the control non-EHE days fall within the same
calendar year. All non-EHE days for each ZCTA between May and
September are used as matched controls as long as they have tempera-
tures above the 75th percentile for that ZCTA. They are then weighted
based on how far in time each is from the event days using a kernel
distance weight. This is a temporal version of an Inverse Distance
Weighting (IDW) procedure, where our bandwidth is a single calendar
year. Second, we calculated the absolute difference between EHE days
and the weighted average of non-EHE days for each zip code. Third, we
modeled the relationship between excess counts of hospitalizations and
the population size of each zip code using a linear model, where the
residuals (see details in Supplemental Fig. A3) represent the heat im-
pacts relative to the population size. Said differently, this model is
standardizing on population size. The model was defined as follows:

Y=Xβ + ϵ

In this equation, Y is the excess count of hospitalizations (henceforth

referred to as the absolute scale estimate), X represents the population
value for each zip code in the 2010 census, ϵ is the error term, and β is
the estimate of the population effect. We do not consider the effect es-
timate, but rather the difference between the predicted Y and the
observed Y.

2.3.2. Bayesian Hierarchical Models
For our fourth step, we used a spatial Bayesian Hierarchical model

(BHM) to consider spatial autocorrelation and improve precision in our
estimates. Spatial modeling leverages information from surrounding
areas to improve the precision of the estimate at any point in space. We
used the within-community matched design absolute scale estimates for
each zip code as the response value in linear BHMs. For relative scale
estimates, we used the residuals from the linear models described above,
using the spBayes package in R. We used population weighted centroids
provided by the US Census Bureau as the spatial unit for this analysis as
this type of modeling requires a Spatial Points Data Frame. We fit an
empirical semi-variogram to estimate the starting prior for the param-
eters: sill (σ2), nugget (τ2), and range (ϕ). Due to the shape of the
empirical semi-variogram, we chose a Spherical correlation structure.
The model was formulated as a two-stage model:

1st stage : Yii
⃒
⃒θ,W ∼ N

(
Xβ+W, τ2I

)

2nd stage : W|σ2,ϕ ∼ N
(
0, σ2H

)

Where W is the vector of spatial weights, and θ is the vector of estimated
spatial parameters. The Yi are our outcome values, which are indepen-
dent but conditional on W. H represents the structure of the spatial
covariance and X represents an intercept. The second stage model cap-
tures the spatial process of the data. We completed model specification
by adding prior values and distributions to β and τ2, and the hyper pa-
rameters ϕ and σ2.

We used prior distributions of parameters to reduce sensitivity to the
priors during the sampling process. We applied 1000 Markov chain
Monte Carlo (MCMC) samples, with the final 250 kept after the burn-in
period. The final recovered spatial weights were utilized as the estimates
for excess hospitalizations in each zip code. We interpolated across space
using multi-level B-splines to create a surface of estimates. Though the
above methodology assumes isotropy, we acknowledge that the spatial
correlation may not be stationary. Isotropy is the assumption that the
spatial correlation has the same range in all directions at all points in a
data set. Lastly, to represent the precision of the BHM estimates, we
estimated the signal-to-noise ratio (SNR) using the resulting model
output (weights for each ZCTA and standard deviations). An SNR is the

Fig. 1. Display of the 95th percentile threshold in degrees Celsius used in our
analysis for each zip code in California. The mean threshold of 35◦ Celsius is
shown in white.

Fig. 2. Schematic of the methods procedure for within-community matched design and Bayesian extension.

K. Hansen et al.
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estimated spatial prediction from the BHM divided by the standard error
estimated from that BHM. The SNR was mapped for each ZCTA as an
indication of areas where estimates are more (or less) precise. We accept
that these SNR values are artificially large because of the violation of the
isotropy assumption and thus the traditional cutoff for significance
(which is 2.0) would be too small. We also present Bootstrap -T lower
bound confidence interval for absolute excess counts in Supplemental
Fig. A4.

We included randomly generated data and R syntax for reproduc-
ibility purposes [https://github.com/KristenHansen/SpatialHeatWaves
].

2.3.3. Extreme heat events definition classification and rank
For the above analysis, each EHE definition is considered in isolation;

however, it is important to consider all types of events holistically. For
both the relative and absolute scales, we formed a dataset with our BHM
estimates of excess hospitalization due to heat and standard errors
consisting of 72 columns representing each EHE definition, and rows
corresponding to our zip codes. We were then able to rank the extremity
of the EHE for each zip code relative to those other events in the same zip
code. We took the highest effect estimate found in all EHE definitions as
the “most effective” or dangerous EHE. This allowed for the exploration
of patterns for all our heat event classifications simultaneously: metric,
duration, and extremity. We explored the spatial heterogeneity of the
importance of metric, duration, and extremity through the highest
ranked EHE by ZCTA and Climate Zone (as defined by the California
Energy Commission (California Energy Commission, n.d.)). This serves
as an exploratory analytical extension to the BHMs.

3. Results

We observed 131,461 total hospitalizations during EHE days for the
five disease subgroups, and 98,562 hospitalizations for matched non-
EHE days. CVD hospitalizations accounted for most of the total hospi-
talizations on both EHE and non-EHE days, with 58% and 66% on EHE
and non-EHE days, respectively (see Table 1).

3.1. Spatial Bayesian Model results

Fig. 3 displays the results of the Spatial Bayesian Model for the
example EHE definition (95th percentile in maximum temperature for
one day). Fig. 3(a) shows the absolute-scale results from the Bayesian
Hierarchical model on all-cause hospitalization count differences
computed via a within community matched design (results for each ICD
code separately are presented in Supplemental Figs. A5 and A6). We
observe areas of high effect specifically in the Central Valley and the
southeastern desert highlighted as having the highest associations with
extreme heat. For Fig. 3(b), which represents the relative scale results,
we use population as a covariate in the spatial Bayesian model. Similar
patterns are found on both risk scales; however, the relative model

(Fig. 3(b)) does display more detail and positive estimates for less
populated regions, although the estimates are close to zero, as would be
expected for a model where population is included.

However, Fig. 3 does not adequately display the results on the spatial
scale that the analysis is computed. Fig. 4 displays the Signal-to-Noise
Ratio (SNR) plots for the same EHE definition as Fig. 3 on both rela-
tive and absolute scales. The SNR results show higher precision in the
absolute case as opposed to the relative. This is to be expected because
relative case estimates are lower in magnitude. Results for all other EHE
definitions can be viewed in the R Shiny application created to accom-
pany this publication at https://kristenhansen.shinyapps.io/HeatCA.

In Table 2, there is a display of temperature and population data by
climate zone as well as the SNR for the highest ranking EHE (the highest
observed effect of all 36 EHE definitions). Of the ZCTAs, 11.8% do not
have a single EHE definition that has precision in estimates (SNR <2),
but this is only true for the very lowest population zip codes with
incredibly low hospitalization rates. Only 5% of ZCTAs never saw an
SNR above 1.

3.2. Extreme heat event definition rank results

Table 3 shows for the four highest ranked heat event definitions, the
number of ZCTAs for which it is the most impactful regarding risk of
hospitalizations for both the absolute and relative scales, as well as the
proportion of zip codes with a specific EHE definition. We observed that
the highest number of heat-related hospitalizations occurred during
diurnal EHEs where the temperature difference between day and night
was very small. This is particularly noticeable for the top two highest
ranked EHEs on both the absolute and relative scales. However, the third
and fourth most dangerous EHEs on an absolute scale were defined by
diurnal and maximum temperatures, respectively. On a relative scale,
the third and fourth most dangerous EHE definitions used minimum
temperatures. This is because the low population desert regions of the
state are highly affected by minimum temperature EHEs. There are
fewer but a consistent number of highly effective EHE definitions that
are based on the heat index metric. This lower number is potentially
attributable to lower relative humidity in much of the state of California.
We can see the spatial pattern of the top ranked EHEs in Fig. 5(a) for the
entire state. Fig. 5(b) shows a more detailed map with all 36 definitions
for the greater Los Angeles area. We can observe that minimum tem-
perature EHEs are the most dangerous (in terms of their ranking) in the
desert regions, diurnal EHEs are the most dangerous in the agricultural
regions and coastal areas, and maximum temperature EHEs are often the
most dangerous in urban regions and the mountains/forested areas.
Heat index EHEs are seen as variable but most impactful in the Central
Valley and central coast. There is considerable variability in urban re-
gions, as can be seen in the Los Angeles plot, where diurnal temperature
EHEs (and to a lesser extent minimum temperature EHEs) also represent
a significant number of ZCTAs. Although all these regions do contain a
mixture of the four metrics, the general pattern holds for both relative

Table 1
Descriptive statistics describing the hospitalizations on EHE days and matched non-EHE days in California, 2004–2013. The non-EHE days are the weighted average of
all days in the warm season. Thus, this is not a true count but an average.

Type of Day Total observed Mean observed per day per zip code Percent Increase from matched total Standard deviation

All-Cause Hospitalizations EHE 131,461 0.95 33.3% 1.446
Non-EHE 98,562 0.72 NA 1.148

Respiratory Disease EHE 40,900 0.297 38.4% 0.647
Non-EHE 29,551 0.216 NA 0.498

Cardiovascular Disease EHE 76,644 0.559 17.2% 0.967
Non-EHE 65,394 0.477 NA 0.803

Acute Renal Failure EHE 7918 0.057 327% 0.251
Non-EHE 2421 0.0176 NA 0.135

Dehydration EHE 5215 0.038 445% 0.200
Non-EHE 1171 0.009 NA 0.093

Heat Illness EHE 784 0.006 3136% 0.077
Non-EHE 25 0.0002 NA 0.014
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and absolute scales. We find that the less extreme (95th percentile) EHE
definitions are more frequent in the absolute scale, suggesting that
longer duration, less extreme heat events may cause a higher number of
hospitalizations overall. The SNR information for all 36 EHE definitions
is accessible at the following link: https://github.com/KristenHans
en/SpatialHeatWaves.

All results can be visualized for each county in California via an
interactive web application: https://kristenhansen.shinyapps.io/Heat
CA. We additionally present the results for the County of San Diego to
better visualize the spatial heterogeneity in the supplemental materials

(see Supplemental Figs. A7 and A8).

4. Discussion

In this study, we aimed to determine where the areas of health
burden associated with extreme heat are and which extreme heat defi-
nitions have the greatest impact for different regions in California at the
fine-scale level. Areas including the Central Valley region experience
higher burden throughout the studied outcomes. Highest spatial vari-
ability can be seen within large urban areas: Los Angeles, San Diego, and

Fig. 3. Spatial distribution of effects of one heat event definition (>95th Tmax percentile for one day) on total hospitalization on the absolute (a, left) and the relative
(b, right) scales.

Fig. 4. Signal-to-Noise Ratio (SNR) values showing the effect on hospitalizations of one extreme heat event definition (>95th Tmax percentile for one day) on both
the absolute (a, left) and relative (b, right) scale. Dark areas correspond to areas with no observed hospitalization for this extreme heat event definition.
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the San Francsico Bay Area.
Similarly, the heat event definitions that led to the most hospitali-

zations varied greatly depending on zip code. In general, of the different
EHE types we considered, diurnal heat events had the greatest effect in
the coastal and agricultural regions, minimum temperature heat events
were most detrimental in the desert, maximum temperature heat events
were the most impactful in forest and mountainous regions as well as
urban areas, and heat index definitions appear most impactful with
considerable variability in the Central Valley and central coast, where
more extreme levels of humidity are observed. This pattern holds true on
both the relative and absolute scales. We find that more extreme and
longer heat events ranked highly on the relative scale, with duration
being the driver on the absolute scale.

Previous studies have considered or accounted for spatial variation
in the impacts of extreme heat by adjusting for spatial location, con-
ducting geographic weighted regressions, or applying cluster analysis
methods (Vaneckova et al., 2010; Hondula et al., 2012; Benmarhnia
et al., 2017; Song et al., 2021). Spatial autocorrelation in heat effects can
and has been studied by using a Gaussian smoother (Chen et al., 2015;
Chien et al., 2016). Other studies have stratified by spatial units without
considering spatial autocorrelation or spatial structure (Murage et al.,

2020; Ingole et al., 2020; Gasparrini et al., 2022). One of the most
common methods for estimating spatial variation in heat-related im-
pacts is based on cluster analysis methods, the most readily used being
Kulldorf (Vaneckova et al., 2010; Hondula et al., 2012; Benmarhnia
et al., 2017). Kulldorf analysis identifies a significant excess of cases
within a moving circular window, providing a measure of how unlikely
it would be to encounter the observed excess of cases in a comparison
region across space. However, such an approach, which is based on
significance testing, dichotomizes the spatial units and identifies “sig-
nificant” clusters where most of the cases occur. Thus, a significant
cluster can be driven by the cluster-specific susceptibility to heat or the
population size or density. For this reason, it becomes difficult to get a
contrasted and comprehensive assessment of the spatial variability
regarding heat-related health impacts. Other spatial approaches have
been used, such as spatial point pattern analysis to estimate relative risks
across the study region at a fine scale (Chen et al., 2015; Chien et al.,
2016). Bayesian hierarchical models can also be particularly useful to
account for spatial variation in heat vulnerability in data rich regions
like large cities (Hondula and Barnett, 2014). For large geographic
areas, such as countries or states, existing studies generally consider
only large spatial units like US metropolitan areas (Anderson et al.,
2013) or UK districts (Bennett et al., 2014; Gasparrini et al., 2022). A
recent study also proposed a spatial extension of distributed non-linear
models for continuous temperatures (Quijal-Zamorano et al., 2024)
based on a Bayesian framework similar to our approach. Our approach
also allows researchers to rank heat events according to their impacts on
a fine spatial scale. Obtaining a classification of the types of heat events
that are associated with the highest health burden by zip code is
particularly useful in informing tailored interventions to optimize ben-
efits associated with heat action plans and early warning systems.

The spatial heterogeneity in heat risks in California has been docu-
mented previously. Such variability can be explained by climate zones,
land use, and topography. Previous research has shown how coastal
areas in California are experiencing more humid nighttime events in the
context of climate change (Gershunov and Guirguis, 2012). This inten-
sification in heat wave activity is due directly to mean warming, espe-
cially ocean warming and increasing atmospheric moisture in coastal
areas. In parallel, desert heat waves are expected to become progres-
sively and relatively less intense while coastal heat waves are projected
to intensify even relative to background warming. There are 16 distinct
climate zones in California that, by definition, have distinct temperature
distributions, and the heat patterns vary substantially. Heavy irrigation
has also been shown to influence the flavors of heat events and the
variance structure of temperature observations.

There are some limitations in our study that should be highlighted.
We are restricted to the zip code level, which presents multiple issues.
Zip codes have high variability in population size and geographic area
and are not regularly shaped. They suffer from what is often referred to
as the modifiable areal unit problem. There are low rates of daily hos-
pitalizations, as would be expected, but this leads to low precision along
with areas of very low population. We used a Bayesian Hierarchical
model (BHM), which improved precision in estimation because it uti-
lizes spatial autocorrelation. Although the BHM improves precision over
other types of modeling, it has a restrictive isotropic assumption, which
may not hold under scrutiny. To account for this, we used priors that
were not particularly restrictive and ended up with acceptance rates
around 15%. Spatial correlation structure will be affected by topography
and climate. For this reason, we also took a relatively small distance as
our range parameter. In future work, it would be important to further
explore the use of anisotropic models for spatial data. Here, we consider
spatial dependency in the hierarchical models; however, with the isot-
ropy assumption, we are potentially misspecifying the model, thereby
increasing bias in the estimates. Further analysis should strive for higher
precision in estimation without using incorrect assumptions, perhaps a
Bayesian framework that allows for anisotropy. We considered lagged
effects considering up to 3 days. However, we did not include longer lags

Table 2
Temperature, population and SNR results displayed by climate zone as defined
by the California Energy Commision [31].

Climate
Zone

Mean
95%
Max
Temp.

Mean
95%
Min
Temp

Number
of ZCTAs

Median
Population of
ZCTA (2010)

Median SNR
of highest
rank (by
ZCTA)

1 25.2 13.4 49 1222 3.2
2 31.7 14.7 90 3104 7.6
3 27.1 15.3 162 21726 14.6
4 32.4 17.5 78 22385 10.5
5 28.3 15.1 25 7646 8.7
6 29.8 19.9 93 27732 11.9
7 30.0 21.1 59 31779 16.7
8 31.9 21.0 115 36171 15.1
9 34.7 21.7 176 31103 14.3
10 36.9 21.9 103 39337 11.4
11 38.9 21.4 92 3787 6.4
12 38.1 20.4 251 12819 8.8
13 39.9 23.3 121 11661 8.7
14 38.5 23.7 70 2632 4.9
15 43.2 29.5 43 8099 6.6
16 32.8 15.2 207 633 2.5
All 34.1 19.5 1744 15719 9.2

Table 3
The number of ZCTAs for which the four most dangerous EHE definitions fall
within the maximum temperatures, minimum temperatures, heat index, and low
difference in temperatures definitions of EHE out of 1744 ZCTAs observed.

Scale Rank Maximum
EHE (%)

Minimum
EHE (%)

Diurnal
EHE (%)

Heat Index
EHE (%)

Relative First 495 (28.3%) 338 (19.4%) 644
(36.9%)

267
(15.3%)

Relative Second 469 (26.9%) 446 (25.6%) 549
(31.4%)

280
(16.0%)

Relative Third 512 (29.3%) 479 (27.4%) 495
(28.3%)

258
(14.8%)

Relative Fourth 471 (27.0%) 461 (26.4%) 496
(28.4%)

316
(18.1%)

Absolute First 506 (29.0%) 289 (16.5%) 600
(34.4%)

349
(20.0%)

Absolute Second 469 (26.9%) 359 (20.6%) 566
(32.4%)

350
(20.1%)

Absolute Third 478 (27.4%) 422 (24.2%) 512
(29.3%)

332
(19.0%)

Absolute Fourth 467 (26.8%) 421 (24.1%) 489
(28.0%)

367
(21.0%)
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because of the lack of power at the zip code level. Future studies may
also focus on the drivers of such spatial heterogeneity in the rankings of
the most dangerous EHEs such as population characteristics, environ-
mental factors, or the existence of implemented heat action plans.

5. Conclusion

In this study, we used a flexible spatio-temporal method of analysis
to detect areas with the highest heat-related burden and to determine
the EHE definitions that drive heat related hospitalizations in different
regions of California. We observed high variability in the type of EHE

definitions that were deemed most impactful depending on zip code.
Nevertheless, by understanding heat burden at such a fine scale, we can
improve current warning systems and guide policy toward the locations
and vulnerable subgroups that are most adversely affected by specific
types of extreme heat events.
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Tobias, A., Tong, S., Rocklöv, J., Forsberg, B., Leone, M., Sario, M.D., Bell, M.L.,
Guo, Y.-L.L., Wu, C., Kan, H., Yi, S.-M., Coelho, M. de S.Z. S., Saldiva, P.H.N., et al.,
2015. Mortality risk attributable to high and low ambient temperature: a
multicountry observational study. Lancet 386 (9991), 369–375. https://doi.org/
10.1016/S0140-6736(14)62114-0.

Gasparrini, A., Masselot, P., Scortichini, M., Schneider, R., Mistry, M.N., Sera, F.,
Macintyre, H.L., Phalkey, R., Vicedo-Cabrera, A.M., 2022. Small-area assessment of
temperature-related mortality risks in England and Wales: a case time series analysis.
Lancet Planet. Health 6 (7), e557–e564. https://doi.org/10.1016/S2542-5196(22)
00138-3.

Gershunov, A., Guirguis, K., 2012. California heat waves in the present and future.
Geophys. Res. Lett. 39 (18) https://doi.org/10.1029/2012GL052979.

Goin, D.E., Gomez, A.M., Farkas, K., Zimmerman, S., Matthay, E.C., Ahern, J., 2019.
Exposure to community homicide during pregnancy and adverse birth outcomes: a
within-community matched design. Epidemiology 30 (5), 713–722. https://doi.org/
10.1097/EDE.0000000000001044.

Guirguis, K., Basu, R., Al-Delaimy, W.K., Benmarhnia, T., Clemesha, R.E.S., Corcos, I.,
Guzman-Morales, J., Hailey, B., Small, I., Tardy, A., Vashishtha, D., Zivin, J.G.,
Gershunov, A., 2018. Heat, disparities, and health outcomes in San Diego County’s
diverse climate zones. GeoHealth 2 (7), 212–223. https://doi.org/10.1029/
2017GH000127.

Guo, C., Ge, E., Lee, S., Lu, Y., Bassill, N.P., Zhang, N., Zhang, W., Lu, Y., Hu, Y.,
Chakraborty, J., Emeny, R.T., Zhang, K., 2023. Impact of heat on emergency hospital
admission in Texas: geographic and racial/ethnic disparities. J. Expo. Sci. Environ.
Epidemiol. https://doi.org/10.1038/s41370-023-00590-6.

Hondula, D.M., Barnett, A.G., 2014. Heat-related morbidity in brisbane, Australia: spatial
variation and area-level predictors. Environmental Health Perspectives 122 (8),
831–836. https://doi.org/10.1289/ehp.1307496.

Hondula, D.M., Davis, R.E., Leisten, M.J., Saha, M.V., Veazey, L.M., Wegner, C.R., 2012.
Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA,
from 1983-2008: a case-series analysis. Environ. Health 11 (1), 16. https://doi.org/
10.1186/1476-069X-11-16.

Ingole, V., Marí-Dell’Olmo, M., Deluca, A., Quijal, M., Borrell, C., Rodríguez-Sanz, M.,
Achebak, H., Lauwaet, D., Gilabert, J., Murage, P., Hajat, S., Basagaña, X.,
Ballester, J., 2020. Spatial variability of heat-related mortality in barcelona from
1992–2015: a case crossover study design. Int. J. Environ. Res. Publ. Health 17 (7).
https://doi.org/10.3390/ijerph17072553. Article 7.

Livneh, B., Rosenberg, E., Lin, C., Nijssen, B., Mishra, V., Andreadis, K., Maurer, E.,
Lettenmaier, D., 2013. A long-term hydrologically based dataset of land surface
fluxes and states for the conterminous United States: update and extensions. J. Clim.
26, 9384–9392. https://doi.org/10.1175/JCLI-D-12-00508.1.

McElroy, S., Schwarz, L., Green, H., Corcos, I., Guirguis, K., Gershunov, A.,
Benmarhnia, T., 2020. Defining heat waves and extreme heat events using sub-
regional meteorological data to maximize benefits of early warning systems to
population health. Sci. Total Environ. 721, 137678 https://doi.org/10.1016/j.
scitotenv.2020.137678.

Murage, P., Kovats, S., Sarran, C., Taylor, J., McInnes, R., Hajat, S., 2020. What
individual and neighbourhood-level factors increase the risk of heat-related
mortality? A case-crossover study of over 185,000 deaths in London using high-
resolution climate datasets. Environ. Int. 134, 105292 https://doi.org/10.1016/j.
envint.2019.105292.

Nitschke, M., Tucker, G.R., Hansen, A.L., Williams, S., Zhang, Y., Bi, P., 2011. Impact of
two recent extreme heat episodes on morbidity and mortality in Adelaide, South
Australia: a case-series analysis. Environ. Health 10 (1), 42. https://doi.org/
10.1186/1476-069X-10-42.

Ostro, B.D., Roth, L.A., Green, R.S., Basu, R., 2009. Estimating the mortality effect of the
July 2006 California heat wave. Environ. Res. 109 (5), 614–619. https://doi.org/
10.1016/j.envres.2009.03.010.

Quijal-Zamorano, M., Martinez-Beneito, M.A., Ballester, J., Marí-Dell’Olmo, M., 2024.
Spatial Bayesian distributed lag non-linear models (SB-DLNM) for small-area
exposure-lag-response epidemiological modelling. Int. J. Epidemiol. 53 (3), dyae061
https://doi.org/10.1093/ije/dyae061.

Robine, J.-M., Michel, J.-P., Herrmann, F.R., 2012. Excess male mortality and age-
specific mortality trajectories under different mortality conditions: a lesson from the

K. Hansen et al.

https://doi.org/10.1016/j.envres.2024.119667
https://doi.org/10.1016/j.envres.2024.119667
https://doi.org/10.1289/EHP13254
https://doi.org/10.1097/EE9.0000000000000114
https://doi.org/10.1289/ehp.1002313
https://doi.org/10.1289/ehp.1002313
https://doi.org/10.1164/rccm.201211-1969OC
https://doi.org/10.1164/rccm.201211-1969OC
https://doi.org/10.1097/EDE.0000000000000375
https://doi.org/10.1097/EDE.0000000000000375
https://doi.org/10.1016/j.scitotenv.2017.03.102
https://doi.org/10.1016/j.scitotenv.2017.03.102
http://refhub.elsevier.com/S0013-9351(24)01572-X/sref7
http://refhub.elsevier.com/S0013-9351(24)01572-X/sref7
http://refhub.elsevier.com/S0013-9351(24)01572-X/sref7
https://gis.data.ca.gov/documents/CAEnergy::building-climate-zones/
https://gis.data.ca.gov/documents/CAEnergy::building-climate-zones/
https://doi.org/10.1016/j.oneear.2023.05.016
https://doi.org/10.1126/sciadv.adj7264
https://doi.org/10.1038/srep10816
https://doi.org/10.1016/j.scitotenv.2016.04.042
https://doi.org/10.1016/j.envint.2023.107836
https://doi.org/10.1016/j.envint.2023.107836
https://doi.org/10.1029/2023GH000997
https://doi.org/10.1016/S0140-6736(21)01208-3
https://doi.org/10.1016/j.envres.2023.116984
https://doi.org/10.1016/S0140-6736(14)62114-0
https://doi.org/10.1016/S0140-6736(14)62114-0
https://doi.org/10.1016/S2542-5196(22)00138-3
https://doi.org/10.1016/S2542-5196(22)00138-3
https://doi.org/10.1029/2012GL052979
https://doi.org/10.1097/EDE.0000000000001044
https://doi.org/10.1097/EDE.0000000000001044
https://doi.org/10.1029/2017GH000127
https://doi.org/10.1029/2017GH000127
https://doi.org/10.1038/s41370-023-00590-6
https://doi.org/10.1289/ehp.1307496
https://doi.org/10.1186/1476-069X-11-16
https://doi.org/10.1186/1476-069X-11-16
https://doi.org/10.3390/ijerph17072553
https://doi.org/10.1175/JCLI-D-12-00508.1
https://doi.org/10.1016/j.scitotenv.2020.137678
https://doi.org/10.1016/j.scitotenv.2020.137678
https://doi.org/10.1016/j.envint.2019.105292
https://doi.org/10.1016/j.envint.2019.105292
https://doi.org/10.1186/1476-069X-10-42
https://doi.org/10.1186/1476-069X-10-42
https://doi.org/10.1016/j.envres.2009.03.010
https://doi.org/10.1016/j.envres.2009.03.010
https://doi.org/10.1093/ije/dyae061


Environmental Research 261 (2024) 119667

9

heat wave of summer 2003. Mech. Ageing Dev. 133 (6), 378–386. https://doi.org/
10.1016/j.mad.2012.04.004.

Schinasi, L.H., Benmarhnia, T., De Roos, A.J., 2018. Modification of the association
between high ambient temperature and health by urban microclimate indicators: a
systematic review and meta-analysis. Environ. Res. 161, 168–180. https://doi.org/
10.1016/j.envres.2017.11.004.

Schwarz, L., Hansen, K., Alari, A., Ilango, S.D., Bernal, N., Basu, R., Gershunov, A.,
Benmarhnia, T., 2021. Spatial variation in the joint effect of extreme heat events and
ozone on respiratory hospitalizations in California. Proc. Natl. Acad. Sci. USA 118
(22), e2023078118. https://doi.org/10.1073/pnas.2023078118.

Sherbakov, T., Malig, B., Guirguis, K., Gershunov, A., Basu, R., 2018. Ambient
temperature and added heat wave effects on hospitalizations in California from 1999
to 2009. Environ. Res. 160, 83–90. https://doi.org/10.1016/j.envres.2017.08.052.

Smargiassi, A., Goldberg, M.S., Plante, C., Fournier, M., Baudouin, Y., Kosatsky, T., 2009.
Variation of daily warm season mortality as a function of micro-urban heat islands.
J. Epidemiol. Community 63 (8), 659–664. https://doi.org/10.1136/
jech.2008.078147.

Song, J., Yu, H., Lu, Y., 2021. Spatial-scale dependent risk factors of heat-related
mortality: a multiscale geographically weighted regression analysis. Sustain. Cities
Soc. 74, 103159 https://doi.org/10.1016/j.scs.2021.103159.

Vaidyanathan, A., Saha, S., Vicedo-Cabrera, A.M., Gasparrini, A., Abdurehman, N.,
Jordan, R., Hawkins, M., Hess, J., Elixhauser, A., 2019. Assessment of extreme heat
and hospitalizations to inform early warning systems. Proc. Natl. Acad. Sci. U.S.A.
116 (12), 5420–5427. https://doi.org/10.1073/pnas.1806393116.

Vaneckova, P., Beggs, P.J., Jacobson, C.R., 2010. Spatial analysis of heat-related
mortality among the elderly between 1993 and 2004 in Sydney, Australia. Soc. Sci.
Med. 70 (2), 293–304. https://doi.org/10.1016/j.socscimed.2009.09.058.

K. Hansen et al.

https://doi.org/10.1016/j.mad.2012.04.004
https://doi.org/10.1016/j.mad.2012.04.004
https://doi.org/10.1016/j.envres.2017.11.004
https://doi.org/10.1016/j.envres.2017.11.004
https://doi.org/10.1073/pnas.2023078118
https://doi.org/10.1016/j.envres.2017.08.052
https://doi.org/10.1136/jech.2008.078147
https://doi.org/10.1136/jech.2008.078147
https://doi.org/10.1016/j.scs.2021.103159
https://doi.org/10.1073/pnas.1806393116
https://doi.org/10.1016/j.socscimed.2009.09.058

	The spatial distribution of heat related hospitalizations and classification of the most dangerous heat events in Californi ...
	Competing financial interests
	1 Introduction
	2 Methods
	2.1 Hospitalization data
	2.2 Meteorological data and extreme heat events definition
	2.3 Data analysis
	2.3.1 The spatial within-community matched design
	2.3.2 Bayesian Hierarchical Models
	2.3.3 Extreme heat events definition classification and rank


	3 Results
	3.1 Spatial Bayesian Model results
	3.2 Extreme heat event definition rank results

	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


