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A B S T R A C T

As a result of climate change, populations worldwide will be exposed to more heat episodes. To ensure a sus
tainable future, cutting-edge tools must be developed to predict the health effects of heat and limit its conse
quences. However, current research has mainly focused on one health outcome in a single city/region, thus 
providing limited knowledge to improve society’s resilience to extreme heat. In this study, a machine learning 
(ML) framework is introduced to predict several heat-related health outcomes in multiple regions simulta
neously, using the province of Quebec (Canada) as a case study. Five ML models including penalized regression, 
ensemble tree-based models and deep neural networks were considered and compared. Models were trained to 
predict these health outcomes using various meteorological, regional and temporal predictors across all regions. 
Our results showed that deep learning models were the most promising, with out-of-sample R2 of >60 % for most 
of the studied health outcomes. However, ensemble tree-based approaches also had the best performance for 
some health outcomes, and were more sensitive to weather variables and to heatwaves. By introducing novel ML- 
based tools for predicting heat risks in several regions, this study can guide climate change adaptation and help 
cities and society to become more healthy, resilient and sustainable.

1. Introduction

Climate change is recognized as one of the greatest threats to human 
health of the current century (Watts et al., 2021). Among its conse
quences are heat episodes that will occur earlier, last longer, be more 
frequent and intense (Meehl & Tebaldi, 2004). Extreme heat already 
affects population health worldwide, both in terms of mortality (e.g., 
Basu, 2009; Bi et al. 2023; Gosling et al., 2009; Kotharkar et al, 2024; 
Son et al., 2019) and morbidity (e.g., Li et al., 2015; Lin et al., 2023; 
Seong et al., 2024; Ye et al., 2012), but its consequences will be even 
more devastating in the future (Curtis et al., 2017; Huang et al., 2011; 
2013). Yet state-of-art tools still need to be developed (or improved) to 
better allocate health resources and adequately target interventions that 
will, ultimately, reduce heat effects and lead to more a sustainable future 
(Ebi & Schmier, 2005; Kotharkar & Ghosh, 2022; McGregor et al., 2015).

With this in mind, recent developments in artificial intelligence (AI) 
and, specifically, machine learning (ML), have opened the door to a wide 
variety of novel applications towards sustainability, for example to 
improve population health (Fisher & Rosella, 2022; Morgenstern et al., 

2020; Wiemken & Kelley, 2019), optimize green infrastructures 
(Shaamala et al, 2024) and mitigate urban heat (Li et al., 2023), among 
others. Indeed, ML can exploit larger datasets than ever (i.e., big data), 
model complex interactions and non-linear relationships, learn from 
multiple data points simultaneously and does not require strong as
sumptions on data distribution, leading to enhanced performance over 
traditional methods (Bi et al., 2019). In the context of climate change 
and increasing extreme heat events, various ML-based models were 
proposed to predict heat-related health impacts (e.g., Boudreault et al. 
2023, Boudreault et al., 2024a, Ke et al. 2023, Kim and Kim 2022, Lee 
et al. 2022, Navares et al. 2018, Nishimura et al. 2021, Ogata et al. 2021, 
Park et al. 2020, Wang et al. 2019, Zhang et al. 2014). However, the 
aforementioned studies have shortcomings that need to be 
acknowledged.

First, most studies modelled a single health outcome such as mor
tality (Boudreault et al., 2023; Kim & Kim, 2022; Lee et al., 2022; Zhang 
et al., 2014) or heat-related illnesses (Ke et al., 2023; Nishimura et al., 
2021; Ogata et al., 2021; Wang et al., 2019). Knowing that heat affects 
both mortality and morbidity, these models need to target multiple 
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health variables to provide a representative portrait of the heat-related 
burden for public health authorities. Second, existing studies have 
mainly focussed on a single city/region (Kim & Kim, 2022; Lee et al., 
2022; Navares et al., 2018) or on multiple cities by (re)fitting the same 
model across locations (Boudreault et al., 2024a; Ogata et al., 2021; 
Zhang et al., 2014). This limits the potential use of big data in population 
health and ML’s ability to take advantage of more data from multiple 
locations to improve its performance. Third, the few multi-region studies 
found in the literature often lacked appropriate validations during 
particular events of interest such as heatwaves (Kim & Kim, 2022; Ogata 
et al., 2021; Park et al., 2020; Wang et al., 2019). This can lead to 
selecting a model that will under-perform during periods when the most 
important health effects are observed (i.e., heatwaves). Fourth, most 
studies have only considered one ML model, mainly ensemble tree-based 
methods (Ke et al., 2023; Kim & Kim, 2022; Wang et al., 2019; Zhang 
et al., 2014). This completely ignores the neural networks family (i.e., 
deep learning) that could be more effective. Moreover, the lack a 
benchmark/comparison model (e.g., linear regression) limits the ability 
to conclude on the gain of ML over more traditional approaches. Finally, 
some ML models in the literature were literally presented as “black 
boxes”, with no indications on models’ explainability (Lee et al., 2022; 
Navares et al., 2018) or on how to adequately tune these models (Ke 
et al., 2023; Park et al., 2020; Zhang et al., 2014).

These drawbacks can lead to an incomplete picture of heat-related 
health impacts, suboptimal predictions and a lack of confidence in 
these models by non-AI experts, thus limiting the ability of cities and 
society to become more resilient and sustainable in a climate change 
context. In this study, a ML-based framework is proposed to model both 
mortality and morbidity (5 health variables) in two populations (general 
and elderly) during summer in multiple regions simultaneously. To that 
end, five ML models based on penalized regression, ensemble tree-based 
models and deep neural networks were considered and applied to the 
province of Quebec, Canada. These models were calibrated with various 

weather, socio-environmental and temporal predictors in a transparent 
way and were thoroughly validated. Finally, models’ explainability was 
also provided, giving valuable insights for health authorities’ pre
paredness and surveillance activities of extreme heat events to foster 
climate adaptation and act towards more resilient cities.

2. Material and methods

2.1. Study design and health outcomes

An ML-based framework was proposed to predict several heat- 
related health outcomes in multiple regions simultaneously (herein
after referred to “multi-region models”), instead of creating individual 
models for each region, thus leveraging information and data from all 
available regions. The 15 southernmost health regions in the province of 
Quebec, Canada, were considered (top-right of Fig. 1), excluding regions 
#10, #17 and #18 due to their different climatology and their smaller 
population compared to the other regions (Boudreault et al., 2024b). 
The spatial scale of the health region (referred to simply as region for the 
rest of the paper) was chosen for this study as a trade-off between 
relevance for decision-makers (i.e., each region has its own public health 
team and director) and statistical power (i.e., having a large enough 
population in each region). These 15 regions represented over 99 % of 
the Quebec population in 2021, i.e. around 8.5M inhabitants. The 
summer season was defined as May to September. This project received 
ethics approval from the Human Research Ethics Committee of the 
National Institute of Scientific Research (CER-22-693). Fig. 1 presents an 
overview of the methodology.

Health data was made available by the Institut national de santé 
publique du Québec (INSPQ). Studied health variables were the daily 
numbers in each region of all-cause: (1) deaths, (2) hospitalizations, (3) 
emergency department visits (EDV), (4) ambulance transports and (5) 
Info-Santé 811 calls (a free telephone consultation service for non-urgent 

Fig. 1. Overview of the methodology.
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health issues) (Table 1). All-cause health variables were chosen over 
cause-specific variables (e.g., cardiovascular diseases, heat-related ill
nesses) because they are more readily available in Quebec and already 
tracked by public health authorities through the health surveillance 
system of extreme weather events called SUPREME (Toutant et al., 
2011). In addition, all these health variables were shown to be 
heat-related in previous epidemiological studies performed in the same 
study area (Boudreault et al., 2024b; Lebel et al., 2019) and in inter
national literature reviews (Campbell et al., 2018; Cheng et al., 2019; Ye 
et al., 2012). Health variables were provided for two populations: (1) the 
general population (of all ages), and (2) the elderly sub-population 
(aged 65 and over), known to be more vulnerable to the effects of 
heat (Benmarhnia et al., 2015). This led to 9 studied health outcomes for 
this study (i.e., 5 health variables in two populations), as the data for 
811 calls was only available for the general population (Table 1). Mor
tality and hospitalization data were available from 1996, EDV and 
ambulance transports from 2014 and 811 calls from 2008. All health 
outcomes were considered until 2019, prior to the COVID-19 pandemic.

2.2. Weather, regional and temporal predictors

Three types of predictors were considered to model the 9 health 
outcomes of interest: (1) meteorological predictors, for the short-term 
effect of weather on health, (2) regional predictors, to account for the 
socioeconomic and environmental differences between regions, and (3) 
temporal predictors, to consider potential temporal patterns or trends in 
the modelled health outcomes (Table 2).

For weather predictors, gridded daily data at 1 km × 1 km over North 
America from 1980 to 2021 from NASA’s Daymet database were used 
(Thornton et al., 2022). Pixel values of minimum (tmin) and maximum 
(tmax) temperature, as well as vapour pressure, were extracted and 
aggregated at the region level by weighting each pixel with the number 
of units located in each pixel using the AQgéobâti database (Adresses 
Québec, 2023). This led to population-weighted weather times series for 
each region. Mean temperature was computed from the average of daily 
maximum and minimum temperatures. Various humidity metrics 
related to different health outcomes such as relative humidity, dew point 
and humidex (Davis et al., 2016) were computed from vapour pressure 
and temperature using MetPy in Python (May et al., 2022). Lagged 
values of meteorological predictors up to 7 days were considered using 
the value at lag 0, the mean of values at lags 1 to 3 days and the mean of 
values at lags 4 to 7 days (Boudreault et al., 2024a). Temperature 
variation variables were also considered including Mean Temperature 
Change (MTC), computed from (tmean0 – tmeand), where tmean0 is the 
current mean temperature and tmeand is the mean temperature at d = 1, 
3 and 7 previous days, and Diurnal Temperature Range (DTR), 
computed from (tmax – tmin) at lags 0, 1, 2 and 3 days. Air pollution 
could not be included in this study because daily data was only available 
in a few regions throughout the study period. No explicit heatwave 
variables (e.g., intensity, duration, etc.) were included in the models. 
Indeed, ML models should be able to develop their own understanding of 

extreme heat events on the basis of the weather variables provided, as 
shown in a previous study (Boudreault et al., 2023).

Regional predictors included demographic, socioeconomic, envi
ronmental and climatological characteristics (Table 2). Total population 
(used as an offset in the models), proportion of elderly (i.e., people aged 
65 years and more) and proportion of women were provided by the 
Ministère de la Santé et des Services Sociaux (MSSS) du Québec from 1996 
to present (MSSS, 2022). The Material and Social Deprivation Index 
(MSDI) developed by INSPQ from data of the canadian census at the 
dissemination area level was used (INSPQ, 2024). MSDI values for the 
social and material component of the index were aggregated at the re
gion level by weighting the MSDI with the population in each dissemi
nation area. Then, a linear interpolation was performed to obtain values 
between each census years (1996, 2001, 2006, 2011 and 2016) for the 
whole studied period. Two built environment variables related to urban 
heat were considered: the Normalized Difference Vegetation Index 
(NDVI), a commonly known index of density of vegetation ranging from 
-1 to 1, and a measure of the Urban Heat Island (UHI), computed as the 
difference between surface temperature and a surrounding milder rural 
reference value, both provided by the Centre d’enseignement et de 
recherche en foresterie de Sainte-Foy (CERFO, 2022). NDVI and UHI values 
available at 15m x 15m resolution in 2013 were weighted by the number 
of units in each pixel (with a buffer of 15 m) to obtain NDVI and UHI 
population-weighted values in all regions (same as what was done for 
weighting meteorological variables above). The 2013 values of NDVI 
and UHI were applied to the whole studied period (i.e., 1996–2019) as 
done previously (Pascal et al., 2021). Finally, 20-year averages of mean 
temperature and relative humidity by region during summer (May to 
September) were considered as climatological predictors. They were 
calculated from daily Daymet values, centred on the years 1980, 1990, 
2000, 2010 and 2020 (only 10 and 11 years were used respectively for 
1980 and 2020, as Daymet data was only available from 1980 to 2021). 
Then, a linear interpolation was performed to get smooth yearly values 
between these 10-year periods. Mean values of regional predictors for 
each region are reproduced in Table S1.

Regarding temporal predictors, they included days of the week (one 
binary variable for each day), public holiday (0 or 1), month (one var
iable for each month from May to September) and year (as a numeric 
variable) (Table 2). In total, there were 47 predictors considered for the 
different models.

2.3. Machine learning models

Predicting each of the 9 health outcomes (Table 1) based on weather, 
regional and temporal predictors (Table 2) can be seen as supervised 
learning problem. Hence, five machine learning (ML) models adapted to 
that end were considered: Least Absolute Shrinkage and Selection Op
erators (Lasso), Random Forest (RF), Light Gradient Boosting Machine 
(LGBM), Multi-Layer Perceptron (MLP) and Long Short-Term Memory 
(LSTM). These models were selected to represent a diversity of archi
tectures, amounts of data required, potential performance and novelty of 

Table 1 
Overview of the studied health outcomes.

Health outcome Age Abbreviation Mean ± SD Range Years

1 Mortality All MOR 0.2 ± 0.1 0.0–1.2 1996–2019
2 Hospitalizations All HOS 2.4 ± 0.7 0.6–6.4 1996–2019
3 EDV All EDV 16.0 ± 7.8 6.0–45.1 2014–2019
4 Ambulance transports All AMB 2.1 ± 0.5 0.4–5.1 2014–2019
5 811 calls All 811 5.4 ± 1.3 1.3–10.9 2008–2019
6 Mortality (65þ) 65+ MOR (65+) 1.0 ± 0.5 0.0–9.9 1996–2019
7 Hospitalizations (65þ) 65+ HOS (65+) 6.0 ± 2.2 0.0–27.0 1996–2019
8 EDV (65þ) 65+ EDV (65+) 20.9 ± 8.7 8.2–63.9 2014–2019
9 Ambulance transports (65þ) 65+ AMB (65+) 6.1 ± 1.3 0.8–14.4 2014–2019

Values are expressed in daily counts per 104 inhabitants across all regions for the May to September period. SD = Standard deviation. Range = Minimum and maximum 
daily values. EDV = Emergency department visits. 811 = Telephone consultation line for non-urgent health issue.
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approach. In addition, most of these models were used in previous 
related studies, thus allowing for comparisons of our results with the 
latter (e.g., Boudreault et al. 2023, 2024a, Lee et al. 2019, Nishimura 
et al. 2021, Ogata et al. 2021, Park et al. 2020, Wang et al. 2019).

Lasso is a multiple regression model that automatically performs 
variable selection and regularization by penalizing the absolute size of 
the coefficients during model training (Tibshirani, 1996). RF is an 
ensemble tree-based method in which a forest of fully developed deci
sion trees is built using bootstrapped datasets (Breiman, 2001). LGBM is 
also an ensemble tree-based method, but it uses trees with fewer leaves 
(called weak learners) that are sequentially added to the ensemble based 

on the residual of the last fitted tree(s) (Friedman, 2001; Ke et al., 2017). 
MLP and LSTM both belong to the family of deep learning models. MLP 
is the vanilla feedforward neural network that is characterized by 
multiple layers of fully connected nodes (neurons) inspired by the ar
chitecture of the human brain (Chapter 6 in Goodfellow et al. 2016). 
LSTM is a type of recurrent neural networks, which are naturally 
adapted for time series data, with the addition of memory cells than can 
retain information over long sequences (Hochreiter & Schmidhuber, 
1997). More information about these models can be found in the above 
references or in Boudreault et al. (2023).

Following the holdout method for time series, ML models were 
calibrated using the first 70 % of available years of data (training) and 
validated using the remaining 30 % of years of data (test). Training years 
(and test years) were 1996–2012 (2013-2019) for mortality and hospi
talizations, 2014–2018 (2019) for EDV and ambulance transports, and 
2008–2016 (2017–2019) for 811 calls in both populations. Given this 
split of data, the models were thus validated in a close to reality context, 
i.e. with weather, regional and temporal predictors over years of data 
that the models have never seen in their training. It should be noted here 
that all regions were used in the training of the models. In other words, 
there is no external validation of the models on new regions. This was 
intended because the models developed here are meant to be used in 
Quebec only, and not in other provinces/countries where the adminis
trative structure of healthcare may differ.

In Lasso, MLP and LSTM, predictors were first scaled to the 0-1 range 
as these models require scaled predictors. Then, given the low evidence 
found about optimal tuning of ML models in our specific context, an 
extensive grid search was performed. Tested hyperparameters 
(including models’ architectures) are reported in Table S2. The training 
dataset was used to find the hyperparameters that minimize the mean 
square error (MSE) in a 5-fold cross-validation grouped by years for 
Lasso, RF, LGBM and MLP and in a holdout validation of 30 % of years of 
the training dataset for LSTM (because of the time series nature of this 
model). Models’ fitting was performed in Python using scikit-learn for 
Lasso, RF, LGBM and MLP (Pedregosa et al., 2011) and keras for LSTM 
(Gulli & Pal, 2017).

2.4. Models’ performance and explainability

Models’ performance was assessed in three different ways using the 
test dataset and based on two performance metrics: coefficient of 
determination (R2) (1) and decrease in Mean Absolute Error (dMAE) 
compared to a non-informative model (i.e., a model containing only an 
intercept) (2) : 

R2 = 1 −

∑
(yi − ŷi)

2

∑
(yi − y)2 (1) 

dMAE =
MAE0 − MAE

MAE0
= 1 −

∑
|yi − ŷi|

∑
|yi − y|

(2) 

where yi is the observed response variable, ŷi is the predicted response 
variable, MAE is the mean absolute error of the model, MAE0 is the mean 
absolute error of a non-informative model and y is the mean response 
variable in the training dataset (equivalent to the intercept in a null 
model).

First, the overall model’s performance across all summer days of test 
years of data and regions was computed. Second, performance metrics 
were computed separately across the 15 regions to see how the perfor
mance was distributed among regions (again, on the test years of data 
only). These two first performance metrics correspond to the perfor
mance for the “heat-related” effect, as they are computed over all 
summer days. Third, the behaviour of the models during two well- 
known heatwaves in Quebec was visually inspected: the 2018 heat
wave from June 30th to July 5th (Lebel et al., 2019) and the 2021 
heatwave from June 6th to June 9th (Lamothe et al., 2023) (Fig. S1). 

Table 2 
Weather, regional and temporal predictors considered in this study.

Units Abbreviation Mean  
± SD

Range Source

Weather predictors
Mean 

temperature

◦C tmean 16.0 ±
4.8

-2.6–29.6 Daymet

Minimum 
temperature

◦C tmin 10.5 ±
4.9

-6.5–24.3 Daymet

Maximum 
temperature

◦C tmax 21.5 ±
5.4

-0.9–35.9 Daymet

Mean humidex - hmdx 21.5 ±
8.1

-10.7–44.5 Daymet

Mean dew point ◦C tdew 10.3 ±
5.1

-10.6–24.2 Daymet

Relative 
humidity

% relh 69.6 ±
9.8

19.8–95.7 Daymet

MTC over 1 day ◦C mtc01 0.0 ±
2.6

-15.3–11.8 Daymet

DTR ◦C dtr 11.1 ±
3.8

1.3–29.4 Daymet

Regional predictors
Total population 

(offset)
104 

hab.
poptot 51.6 ±

46.4
9.0–206.6 MSSS

Elderly 
population 
(65+)

% pop65p 15.2 ±
3.6

7.4–27.6 MSSS

Women 
population

% popsexf 50.2 ±
0.6

48.7–52.0 MSSS

MSDI – Social 
component

- msdisoc -0.6 ±
1.0

-2.6–1.8 INSPQ

MSDI – Material 
component

- msdimat 0.9 ±
1.8

-2.1–6.3 INSPQ

NDVI - ndvi 0.48 ±
0.06

0.36–0.60 CERFO

UHI 
measurement

◦C uhi 7.3 ±
1.9

3.3–10.5 CERFO

Historical 
summer 
temperature

◦C hsumtemp 16.0 ±
1.8

12.2–18.5 Daymet

Historical 
summer rel. 
humidity

% hsumhum 69.5 ±
2.3

64.4–73.8 Daymet

Temporal predictors
Day of week - dow_1 to dow_7 - 0 or 1 -
Holiday - hol - 0 or 1 -
Month - month_5 to 

month_9
- 0 or 1 -

Year - year Depends on health 
outcomes

-

All data span from 1996 to 2019 across all regions for May to September months. 
Lagged variables were also used in the models, but not shown in the table (i.e., 
tmean13 [at lags 1 to 3 days], tmean47 [lags 4 to 7 days], tmin13, tmin47, 
tmax13, tmax47, hmdx13, hmdx47, tdew13, tdew47, relh13, relh47, mtc03, 
mtc07, dtr1 [dtr at lag 1 day], dtr2, dtr3). Total population by region was used as 
an offset for the response variable (i.e., daily count / total population) rather 
than a predictor. SD = Standard deviation. Range = Minimum and maximum 
values. MTC = Mean temperature change. DTR = Diurnal temperature range. 
MSDI = Material and social deprivation index. NDVI = Normalized difference 
vegetation index. UHI = Urban heat island. MSSS = Ministère de la santé et des 
services sociaux. INSPQ = Institut national de santé publique du Québec. CERFO 
= Centre d’enseignement et de recherche en foresterie de Sainte-Foy.
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Note that the 2018 heatwave was part of the training set for EDV and 
ambulance transports, while the 2021 heatwave occurred during the 
COVID-19 pandemic that had an important effect on reported numbers 
(Lamothe et al., 2023). These two heatwaves had to be selected due to 
the absence of heatwaves in 2019. Health and predictors data in 2021 
were only used for this specific heatwave validation (i.e., they were not 
used in models’ calibration nor in other types of evaluation). Validation 
during heatwaves was presented for daily mortality/morbidity values 
aggregated across the 15 regions (i.e., for the whole province of 
Quebec). This last validation of the models during specific extreme heat 
episodes was added to validate models’ performance for the “heatwave” 
effect.

In addition to performance, models’ explainability was also pro
vided. Although many methods exist to that end and are still emerging 
(see Rasheed et al. (2022) for a review), feature importance (FI) was 
chosen for the current study as it can give a quick overview of the most 
important predictors for any type of model, thus allowing to compare 
results of various modelled health outcomes (n=9), machine learning 
models (n=5) and tested predictors (n=47) at a glance (e.g., Boudreault 
et al. 2023, Zhang et al. 2014). FI was computed based on permutation, 
which consists of randomly shuffling each predictor and quantifying the 
increase in mean square error (MSE) on the training dataset after shuf
fling. The more the MSE increases, the more the predictor was important 
to the model’s predictive power. This process was repeated 100 times for 
each predictor and the average increase of MSE was taken. FI metrics 
were converted to ranks, rank #1 being the most important predictor 
and #p (i.e., the number of predictors) the least important one. Only the 
15 most important variables were reported (out of a total of 47).

3. Results

The obtained results are described below, while their discussion and 
interpretation are presented in the Discussion (Section 4). Sections 3.1 
and 3.2 present respectively the performance of the models across 
Quebec and by region through the summer. Overall, deep learning 
models (MLP and LSTM) seemed to outperform other approaches for 
most health outcomes in terms of out-of-sample R2 and dMAE values. In 
section 3.3, performance during two major heatwaves (2018 and 2021) 
are reported. LGBM was the most sensible model to extreme heat events 
and better predicted the health effects during these two periods. Finally, 
Section 3.4 highlights the most important predictors for all models and 
health outcomes. Overall, regional and temporal predictors were the 
most important variables, followed by weather factors such as temper
ature metrics. Optimal hyperparameters found for each ML model and 
health outcomes were reported in Supplementary Material (Table S3).

3.1. Performance across all regions

Models’ performance in terms of R2 and dMAE was computed on the 
test years of data across all regions in Table 3. All ML approaches per
formed well to predict daily morbidity variables (i.e., HOS, EDV, AMB 

and 811) with out-of-sample R2 values of 60–95 % for both general and 
elderly populations (Table 3, left side). However, mortality in both 
populations and ambulance transports in the elderly population were 
less well predicted with R2 values of ~10 % and ~30 %, respectively, 
indicating weaker performance of all models to predict these health 
outcomes. Overall, ensemble tree-based methods (RF, LGBM) and neural 
networks (MLP and LSTM) outperformed Lasso. However, the difference 
in performance depended on the modelled health outcome. For example, 
there was a 10–15 % increase in R2 for hospitalizations and a 5 % in
crease for EDV in both populations for RF, LGBM, MLP and LSTM 
compared to Lasso. The highest increase in R2 was 15–20 % for 811 calls 
in neural networks (MLP and LSTM) compared to Lasso. For mortality 
and ambulance transports, the difference between Lasso and other 
models was <5 %. A few combinations of models and health outcomes 
had slightly worse performance compared to Lasso (e.g., RF, LGBM and 
LSTM for mortality in the elderly population; RF, LGBM and MLP for 
ambulance transports in the general population). These findings were 
similar when looking at the decrease in Mean Absolute Error (dMAE) 
performance criteria (Table 3, right side), although some slight differ
ences were noted. For example, RF was the best model for mortality 
based on dMAE, while it was MLP based on R2. Across all health out
comes, LSTM and MLP were overall the most performing models for both 
performance criteria, but RF and LGBM were also sometimes the best 
approaches.

3.2. Performance by region

The performance metrics were also reported separately for each of 
the 15 regions in terms of R2 for the general population (Fig. 2). dMAE 
values by region were also analyzed but were not shown because the 
same regional patterns were observed. Results for mortality (a) showed 
that R2 reached up to 30–35 % for regions #1 and #4 in all models. In 
other regions, R2 was closer to the overall value of 10 % found in Section 
3.1. For hospitalizations (b), only region #8 was less well predicted by 
all models. Hospitalizations in regions #6 and #13, respectively Mon
treal and Laval (which are highly populated regions, recall Table S1), 
were not well modelled by Lasso (R2 of ~30 %), but had a much better 
performance with the other ML models (R2 > 80 %). The same behav
iour was also observed for EDV (c) in regions #1 and #12 where per
formance was weaker for Lasso than for the other ML models. There was 
a high variability of performance in the modelled ambulance transports 
(d), with R2 values ranging 0–80 %. Finally, 811 calls (e) were poorly 
modelled in regions #2, #3, #4 and #5, but regions #3 and #5 were 
improved with Lasso, MLP and LSTM models compared to RF and LGBM.

Results in the elderly population were comparable to the ones 
observed in the general population, with notable improvements in some 
regions by ensemble tree-based models and neural networks compared 
to Lasso (Fig. S2). The greatest regional variability of performance was 
observed for mortality (a) and ambulance transports (d) in the elderly 
population, as also observed in the general population. In terms of 
hospitalizations (b) and EDV (c), these two health variables were slightly 

Table 3 
Performance metrics during out-of-sample test years in terms of R2 (left side) and decrease in Mean Absolute Error (dMAE) (right side) across all regions.

Health outcomes R2 (%) dMAE (%)

Lasso RF LGBM MLP LSTM Lasso RF LGBM MLP LSTM

MOR 11.5 11.1 12.2 13.0 12.9 2.8 4.8 4.7 4.5 4.7
HOS 66.4 73.1 74.2 71.8 71.2 43.0 51.0 52.6 50.5 49.2
EDV 92.5 95.4 96.9 97.8 97.4 73.5 79.6 83.0 87.0 86.0
AMB 57.4 56.8 57.2 55.8 59.7 33.5 33.8 34.5 30.8 36.7
811 65.9 59.1 59.8 82.1 82.7 46.9 35.8 36.4 60.5 61.2
MOR (65þ) 11.0 8.8 9.3 11.3 10.4 9.5 7.4 7.5 10.1 9.8
HOS (65þ) 50.9 63.8 65.3 65.1 63.9 32.0 45.2 46.2 46.3 45.5
EDV (65þ) 87.1 90.9 91.3 90.4 91.4 64.3 72.6 72.2 71.3 72.9
AMB (65þ) 28.9 31.4 31.2 30.4 29.5 16.5 18.3 17.9 17.9 17.1

Best performance metrics are in bold for each health outcome.
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less well predicted in some regions for the elderly population compared 
to the general population.

3.3. Validation during heatwaves

Observed and predicted values during 2018 and 2021 heatwaves 
across the province of Quebec were reproduced in Fig. 3. The 2018 
heatwave showed a high increase in observed daily mortality and 
ambulance transports, but no clear increasing trend in hospitalizations, 
EDV and 811 calls (solid black lines in Fig. 3i). For mortality (i.a), LGBM 
predicted with the greatest accuracy the increased mortality, followed 
by MLP. For hospitalizations (i.b) and 811 calls (i.e), all models pre
dicted well the trends in daily counts, but there was not an increased 
heatwave effect. For EDV (i.c), only RF predicted a peak in visits, while 
the observed data did not show any. For ambulance transports (i.d), the 
two peaks also seemed better modelled with these two models (LGBM 
and MLP) compared to others (Lasso, RF and LSTM), even though the 
second peak was slightly underestimated by all models at different 
levels. During the 2018 heatwave, same results were generally found in 
the elderly population (Fig. S3i) with some exceptions. For example, RF 
also modelled the peak of mortality well in the elderly population in 
2018 along with LGBM (i.a). Also, only LGBM and LSTM reproduced the 
first increase in ambulance transports during 2018 heatwave in the 
elderly population, but all models underestimated the second peak later 
during that heatwave (i.d). There was no notable difference in 

hospitalizations (i.b) and EDV (i.c) in 2018 in the elderly population 
compared to the general population.

The 2021 heatwave was highly influenced by changes in mortality 
and morbidity due to the COVID-19 pandemic. Indeed, most models 
were no longer aligned with the observed values (Fig. 3ii). Still, the 
patterns in the models during that heatwave could be analyzed. For 
example, the mortality peaked less in 2021 than in 2018 and none of the 
models predicted an increase in mortality during that period (ii.a). It is 
worth recalling that this heatwave was not as hot and long as the 2018 
one (Fig. S1). The hospitalizations were still insignificantly impacted by 
the heatwave and all models reproduced that behaviour well (ii.b). The 
peak of EDV (ii.c) and ambulance transports (ii.d) observed in 2021 was 
well detected by most models, except RF for ambulance transports. 
Finally, 811 calls were predicted to increase by all models, but not such 
an increase was observed (ii.e). There was no noteworthy difference in 
the results for the elderly population during the 2021 heatwave 
compared to the general population (Fig. S3ii).

3.4. Models’ explainability

The 15 first most important predictors (out of 47) for all studied 
health outcomes and models were extracted for the general population 
(Table 4). Overall, regional predictors, such as pop65p (percentage of 
population 65 and over), hsumtemp (historical summer temperature), 
hsumhum (historical summer humidity) and msdisoc (social deprivation 

Fig. 2. Regional performance in terms of R2 in the 15 regions for all models in the general population for (a) mortality, (b) hospitalizations (c) emergency department 
visits, (d) ambulance transports and (e) 811 calls. Each region is represented by a hexagon of equal size, irrespective of the actual area of the region. The geographical 
position of the regions has been preserved. The number in the hexagon indicates the region code as in Fig. 1. Note that the scale of R2 values is different across health 
outcomes as the goal is to compare regional performance for each health outcome, rather than to compare health outcomes with each other (refer to Table 3 to 
that end).
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index), appeared in the first 5 ranks for all health outcomes and models. 
These variables can account for regional differences in the modelled 
health outcomes. Temporal predictors were also among the most 
important variables in ranks 1 to 15, depending on the health outcome 
and/or model. The most important temporal variables were associated 
with daily (dow_), yearly (year) and, less frequently, monthly (month_) 
patterns in the modelled health outcomes. It is worth nothing that Sat
urday (dow_6) and Sunday (dow_7) were the two most important pre
dictors in hospitalizations for all models (Table 4b).

Weather variables seemed less important (at ranks 7 and above) than 
regional and temporal predictors across all models (Table 4). However, 
major differences between models and health outcomes were noted. In 
terms of models, weather variables were generally more important in 
Lasso, RF and LGBM than in MLP and LSTM. In terms of health out
comes, weather predictors were more important for mortality (a) and 
ambulance transports (d), at ranks 7 to 10 approximately. They were 
respectively tmax (maximum temperature), mtc07 (mean temperature 
change over 7 days), tmean (mean temperature) and hmdx (humidex) for 

mortality and mtc07, tmax47 (maximum temperature at lags 4 to 7 
days), tmax13 and hmdx13 for ambulance transports, according to Lasso, 
RF and LGBM. For hospitalizations (b), temperature exposures at 4 to 7 
previous days appeared in ranks 13 to 15 in RF, but these variables did 
not seem important in the other models. For EDV (c), tmax13, mtc07 and 
tmax47 were the most important weather predictors (ranks 14–15) in RF 
and LGBM. For 811 calls (e), 4 to 7 days lagged humidex (hmdx47) and 
dew point (tdew47) exposure were among the 15 most important pre
dictors in Lasso and LGBM, while tdew and tmin (minimum temperature) 
were found in MLP.

In the elderly population, similar results as above were found, i.e. 
regional and temporal variables were the most important predictors 
followed by weather variables (Table S4). Weather variables were again 
more important for mortality (a) and ambulance transports (d) in the 
elderly population, but with some notable differences. Change of tem
perature over 3 (mtc03) and 7 (mtc07) days seemed more important than 
direct temperature exposure in the elderly population compared to the 
general population for these two health outcomes. Even though weather 

Fig. 3. Observed (solid black line) and predicted (dashed coloured lines) daily counts of (a) mortality, (b) hospitalizations (c) emergency department visits, (d) 
ambulance transports and (e) 811 calls in all studied regions for the general population during (i) 2018 and (ii) 2021 heatwaves. Heatwaves’ periods are highlighted 
in grey.
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Table 4 
Top 15 most important predictors for all models in the general population for (a) mortality, (b) hospitalizations, (c) emergency department visits, (d) ambulance transports and (e) 811 calls.

Weather variables are in light orange, temporal predictors in blue and regional predictors in grey. Refer to Table 2 for a description of each abbreviation.
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variables were less important for hospitalizations (b), the 4 to 7 days 
lagged temperature exposure was consistent in the two populations. For 
EDV (c), temperatures with longer lags were found to be more important 
in the elderly compared to the general population.

4. Discussion

This study considered 5 machine learning (ML) models to predict 
several heat-related health outcomes in 15 regions in the province of 
Quebec (Canada). ML models trained with weather, regional and tem
poral predictors from multiple locations allowed to predict a health 
outcome in each of the regions simultaneously, without the need to (re) 
fit the same model to different locations (e.g., Ogata et al. 2021, Zhang 
et al. 2014, Boudreault et al., 2024a) or being limited to a single-location 
study (e.g., Boudreault et al. 2023, Lee et al. 2022, Navares et al. 2018). 
The models’ calibration (initial and final hyperparameters, packages 
and software used), validation (overall, by regions and during heat
waves) and explainability (with feature importance) was transparent 
and comprehensive, which contrasts with the existing literature in 
population health (Morgenstern et al., 2020) and previous studies (e.g., 
Lee et al. 2022, Navares et al. 2018, Park et al. 2020, Wang et al. 2019, 
Zhang et al. 2014). To our knowledge, this is the first study to consider 
such a wide range of ML approaches, including deep learning, to model 9 
health outcomes in several locations simultaneously.

In all the considered models, morbidity variables in both populations 
were well modelled with out-of-sample R2 values of >60 %, while 
mortality and ambulance transports in 65+ population were less accu
rately predicted with R2 values of <30 % (recall Table 3). This may be 
explained by different reasons, such as (1) the use of all-cause indicators 
instead of heat-related illnesses, (2) the presence of more noise/ 
randomness in these health outcomes compared to the other ones, (3) a 
change of relationship in the test vs. the training period, and (4) a lack of 
predictors to correctly capture the relationship. Unfortunately, the focus 
on modelling a single health outcome in the literature limited the pos
sibility to compare our results on different health outcomes with other 
studies. In terms of modelling approaches, deep neural networks (MLP 
and LSTM) were overall the best-performing approaches across the 9 
health outcomes modelled, followed by ensemble tree-based approaches 
(RF and LGBM) when looking at the overall summer period. For some 
health outcomes, increases in out-of-sample R2 of up to 20 % were noted 
for neural networks compared to Lasso. Lasso was never the best 
modelling approach in our study.

In the literature, a few other studies compared the results of various 
ML models to predict heat-related health outcomes. For example, Lee 
et al. (2022) found that penalized regression and tree-based methods 
outperformed LSTM for all-cause and cause-specific mortality pre
dictions in Seoul, South Korea. Boudreault et al. (2023) reported that 
ensemble tree-based models had better performance than neural net
works and statistical models for mortality prediction during summer in 
Montreal, Canada. LSTM was found to be more efficient than RF and 
non-linear equations to model heat-related illnesses in the study of 
Nishimura et al. (2021) in Nagoya, Japan. Navares et al. (2018) found 
the best performance with the Auto-Regressive Integrated Moving 
Average (ARIMA) model and neural networks compared to tree-based 
methods for hospital admissions prediction in Madrid, Spain. These 
comparisons with international studies should be made with caution 
given the differences in study population, healthcare management, 
models used and studied health outcome. In addition, all the above 
studies were conducted with data of only one region/city and for a single 
health outcome. Indeed, other past multi-region studies mainly 
employed a single tree-based approach (e.g., Ke et al. 2023, Park et al. 
2020, Wang et al. 2019) instead of various machine and deep learning 
models as in our study, an important novelty. Thus, this can explain the 
differences in performance observed in other studies and why deep 
learning was found to be superior in ours.

In addition to overall performance, further validations by region and 

during heatwaves presented a more complete picture of models’ per
formance. First, the performance by regions showed that some regions 
were considerably better modelled by neural networks models 
compared to Lasso, while some regions remained poorly modelled by all 
approaches (recall Figs. 2 and S2). The 2018 heatwave showed sharp 
increases in mortality and ambulance transports that were well pre
dicted by LGBM (for mortality), LGBM/RF (elderly mortality) and 
LGBM/MLP (ambulance transports) (recall Figs. 3 and S3). These results 
were consistent during the 2021 heatwave, although COVID-19 had a 
strong influence on the reported numbers (e.g., mortality displacement, 
lower use of health services) and that heatwave was not as hot and long 
as 2018’s (recall Fig. S1). These additional validations, that have not 
been computed nor presented in previous studies, have highlighted 
some key information that overall performance metrics cannot reveal. 
They thus opened the door to future improvements to these multi-region 
models. For example, weighting observations when training models 
could ensure more accurate predictions in the most densely populated 
regions, or in those with the weakest performance. Furthermore, as the 
best model may vary depending on how performance is evaluated as 
seen above and in a previous study (Boudreault et al., 2023), stacked 
models could be considered in the future to “pool” the strengths of 
different approaches and result in a model likely to work better in 
various situations (e.g., Lu and Qiu 2023, Navares et al. 2018).

To supplement these validations, some models’ explainability was 
also provided, limiting the “black-box” feeling of the ML methodology 
when this information is not provided (e.g., Lee et al. 2022, Navares 
et al. 2018). Feature importance (FI) showed that regional and temporal 
predictors were more important than weather variables for all health 
variables, underlining the presence of strong regional and temporal 
patterns in the modelled health variables (recall Tables 4 and S4). This 
result was expected given that the raw daily counts of the different 
health outcomes (adjusted by population) were modelled, which is 
commonly done in the literature (e.g., Lee et al. 2022, Navares et al. 
2018, Ogata et al. 2021, Park et al. 2020, Wang et al. 2019). Modelling 
raw daily data is an advantage as it limits the data preparation steps such 
as trends/patterns removal required in other studies (e.g., Boudreault 
et al. 2023, 2024a, Masselot et al. 2018, Zhang et al. 2014). The lower 
importance found for weather variables can also be explained by the 
inclusion of highly correlated temperature variables in the models. This 
may have prevented the detection of these variables with 
permutation-based FI metrics. For example, if tmean is no longer avail
able to the model, but tmax and tmin are, the model can still perform 
relatively well, leading to a lower FI value for tmean (the same also 
occurs for the other temperature variables, following the same logic). 
However, considering all these temperature variables (even if highly 
correlated) was important as they can contribute to a better under
standing of weather patterns and, consequently, improve the predictive 
power of heat-related health outcomes by these models.

Regarding weather, some key meteorological information for public 
health planning and surveillance was revealed. First, mortality and 
ambulance transports in the general population were the most sensitive 
to short-term heat exposure (recall Tables 4 and S4) and heatwaves 
(recall Figs. 3 and S3), supporting their use as early indicators of heat 
effects. Second, hospitalizations, EDV and 811 calls were found to be 
associated with more delayed temperature effects. Finally, temperature 
changes could potentially be more important than direct temperature 
exposure in the elderly population. These divergent results highlight the 
need for differentiated analyses by population strata, which can lead to 
better-targeted heat-related prevention actions. These potentially new 
insights were made possible because of the introduced ML models 
combining weather information from multiple regions and by the large 
number of health outcomes studied. They could help health authorities 
to better plan the health burden during heatwaves and deliver appro
priate messages to different vulnerable populations. However, explain
ing the pathways by which these weather variables may be linked to 
health effects is beyond the scope of the current study and will need to be 
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confirmed by further research.
As the proposed models were trained with readily available pre

dictors, they can be used to monitor health effects of heat over different 
time horizons in future applications, thus acting towards more resilient, 
healthier and sustainable cities. On the one hand, used in combination 
with weather forecasts, they can predict the short-term effects of heat on 
various health indicators and limit the heat effect on population through 
prevention. On the other hand, by leveraging climate and socioeconomic 
projections, these models can assess the long-term heat-related health 
burden in the coming decades, helping authorities to better plan climate 
change adaptation measures to reduce the heat burden. With these new 
tools in hand, public health authorities and decision-makers will have a 
better understanding of complex interactions between climate and 
health and a clearer portrait of the heat impacts in multiple locations 
and for several health outcomes. Ultimately, adopting these approaches 
will increase the resiliency of the society considering climate change 
ahead.

The strengths of the study must be highlighted. First, five ML models 
were considered and compared, including penalized regression (Lasso), 
ensemble tree-based methods (RF and LGBM) and deep learning (MLP 
and LSTM). Second, these models were trained using a comprehensive 
database of meteorological (e.g., temperature exposure and changes, 
humidity), regional (e.g., demographic, socioeconomic, built environ
ment, climatology) and temporal (e.g., day, month and year) predictors. 
Third, these models allowed for health outcomes predictions simulta
neously in multiple locations without the need to create one model per 
location, as it would be the case for traditional statistical/ML models. 
Fourth, 9 health outcomes, including both mortality and morbidity 
(hospitalizations, EDV, ambulance transports and 811 calls) in two 
populations (general and the elderly), were modelled, providing a more 
complete picture of the heat effects than in other studies. Finally, our 
study was thoroughly transparent in terms of ML models’ calibration, 
validation and explainability, which contrasted with existing literature.

Some drawbacks must also be noted. First, only all-cause health 
variables were modelled as they were more readily available informa
tion. This could explain the low performance obtained for some health 
outcomes. Studying cause-specific mortality or morbidity, such as heat- 
related illnesses that may be more closely related to temperature vari
ables, could lead to better performance and is left for future research. 
Second, the models were developed using data from all southernmost 
regions of Quebec, Canada. Developing models for each region indi
vidually could also be of interest to compare with the results obtained 
here, but was deemed out-of-scope for the current study. Third, the 
validation of the models was performed on out-of-sample years of data, 
but not on out-of-sample regions. This latter validation was less relevant 
in our study, since the developed models were intended to be used only 
in Quebec’s regions. Fourth, not all predictors could be included in our 
models (such as air pollution due to data unavailability), which can 
explain the weaker performance obtained for some health outcomes. 
Finally, other models’ explainability techniques, in addition to pre
dictions during heatwaves and feature importance already presented, 
could have been explored to further explain ML models, such as the 
predicted responses for different temperature values (e.g., 10◦C, 20◦C or 
30◦C) or SHAP values.

5. Conclusion

Deep learning models (MLP and LSTM) were the most promising 
tools to predict several heat-related health impacts in multiple regions of 
Quebec (Canada) during summer, with out-of-sample R2 of >60 % for 
most of the health outcomes studied. However, tree-based methods (RF 
and LGBM) also performed best for some health outcomes, and LGBM 
was found to be more accurate during heatwaves. These new tools based 
on machine and deep learning can be used by decision-makers to better 
predict the heat burden during summer, plan resources and actions 
appropriately, and limit the consequences of increasing heat episodes in 

a climate change context. They therefore contribute directly to making 
cities more resilient and, more broadly, to create a more sustainable and 
healthier society. Finally, this general framework can also be used in 
other regions of the world experiencing the negative effects of heat, as 
well as extended to study the joint effect of multiple exposures such as 
extreme heat and air pollution.
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