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Summary
Background Daily time-series regression models are commonly used to estimate the lagged nonlinear relation
between temperature and mortality. A major impediment to this type of analysis is the restricted access to daily
health records. The use of weekly and monthly data represents a possible solution unexplored to date.

Methods We temporally aggregated daily temperatures and mortality records from 147 contiguous regions in 16
European countries, representing their entire population of over 400 million people. We estimated temperature-lag-
mortality relationships by using standard time-series quasi-Poisson regression models applied to daily data, and
compared the results with those obtained with different degrees of temporal aggregation.

FindingsWe observed progressively larger differences in the epidemiological estimates with the degree of temporal data
aggregation. The daily data model estimated an annual cold and heat-related mortality of 290,104 (213,745–359,636) and
39,434 (30,782–47,084) deaths, respectively, and the weekly model underestimated these numbers by 8.56% and
21.56%. Importantly, differences were systematically smaller during extreme cold and heat periods, such as the
summer of 2003, with an underestimation of only 4.62% in the weekly data model. We applied this framework to
infer that the heat-related mortality burden during the year 2022 in Europe may have exceeded the 70,000 deaths.

Interpretation The present work represents a first reference study validating the use of weekly time series as an
approximation to the short-term effects of cold and heat on human mortality. This approach can be adopted to
complement access-restricted data networks, and facilitate data access for research, translation and policy-making.
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Research in context

Evidence before this study
We searched PubMed from study conception to May 1st 2023
for articles published in English using the search words
“temperature”, “mortality”, “dlnm” AND “aggregation”. We
only found an interesting theoretical study introducing a
general methodology dealing with aggregated health time-
series, which is an approach that better represents the spread
of the health response to an exposure, and reduces the noise
in the health data. The proposed methodology is illustrated
by modelling the influence of temperature on cardiovascular
mortality in Canada. The study is however different from the
present work in the sense that it analyses moving averages of
health data, thus not reducing the number of data points in
the health time-series, as we would expect when using weekly
or monthly health data.

Added value of this study
A major impediment to large-scale epidemiological studies
analysing the short-term health effects of ambient
temperatures is the restricted access to daily health records in
many countries, regions and cities. A possible solution to
circumvent this problem would be the use of weekly or
monthly time-series of health outcomes, which are more
readily available in open access due to the lower level of
temporal disaggregation. We here temporally aggregate a
daily temperature and mortality database from 147
contiguous regions in 16 European countries, and analyse and

contrast the estimates obtained from daily, weekly, 2-weekly
and monthly data models. We estimated temperature-lag-
mortality relationships by using standard time-series quasi-
Poisson regression models applied to daily data, and
compared the results with those obtained with different
degrees of temporal data aggregation. To our knowledge, this
is the first study to analyse the effect of temporal data
aggregation in time-series epidemiological studies of
temperature and mortality.

Implications of all the available evidence
We generally found that the degree of aggregation of the
monthly data is temporally too coarse to be used for the
purpose of estimating the short-term health effects of
ambient temperatures on human mortality. Instead,
aggregated weekly time-series of temperature and mortality
data have been shown to represent an approximation of the
estimates obtained in the daily data model. Therefore, the
present work represents a first reference study validating the
use of weekly time series as an approximation to the delayed
nonlinear relation between daily temperatures and mortality
records. As such, this approach can be adopted to
complement existing, large-scale, access-restricted, data
networks, and to facilitate data access for research, translation
and policy-making by using complementary sources of data
not explored to date.

Articles

2

Introduction
Exposure to ambient temperatures represents a major
threat to vulnerable populations by substantially contrib-
uting to increased morbidity and mortality.1 According to
the best available global estimates for urban populations,2

9.43% (95% confidence interval [CI] 7.58–11.07) of all-
cause mortality is related to non-optimal temperatures,
with 8.52% (6.19–10.47) for cold and 0.91% (0.56–1.36)
for heat. In Europe, the whole population estimates (i.e.
both urban and rural) indicate that temperatures are
related to 7.17% (5.81–8.50) of all deaths, with 6.51%
(5.14–7.80) for cold and 0.65% (0.40–0.89) for heat.3,4

Distributed lag nonlinear models5,6 are commonly used
to quantify the short-term health effects of ambient
temperatures, which generally include controls for sea-
sonal and long-term trends, and a cross-basis modelling
the delayed nonlinear relation between exposure and
response.1–4,7–12 For mortality, available studies have
consistently shown that the effects of cold are distributed
along a wide range of lags, of up to a month, while the
effects of heat are more immediate and do not usually
last for more than a week.

As a result of the distributed nature of the approach
modelling these short-term lagged effects, studies
generally rely on regression models applied to daily time-
series of the environmental exposure and the health
response. A major impediment to this type of large-scale
analysis is the restricted access to daily health records in
many countries, regions and cities, which limits the ho-
mogeneity, comparability, spatiotemporal coverage and
population disaggregation of the results. Projects and
initiatives, such as PHEWE,13,14 NMMAPS,15 EURO-
HEAT,16 CIRCE,17 PHASE,18 MCC2,9 and EARLY-ADAPT,1

have been designed to compile and jointly analyse daily
health databases covering large continental or global do-
mains. Nonetheless, confidentiality requirements, legal
constraints, time needed to obtain the data and the
bureaucratic obstacles of data transfer agreements
continue to be major limiting factors for research. These
limitations are particularly consequential when counts of
health outcomes need to be temporally disaggregated at
the daily resolution, for example in the estimation of the
distributed lagged effects of cold and heat.

A possible solution to circumvent this kind of prob-
lems would be the use of weekly or monthly time-series
of health outcomes, which are more readily available in
open access due to the lower level of temporal disag-
gregation. For example, an open access weekly mortality
www.thelancet.com Vol 36 January, 2024
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database from Eurostat has been recently used to
develop data-driven indicators tracking progress on
health and climate change,11 or to quantify the heat-
related mortality burden of the record-breaking tem-
peratures registered during the summer of 2022 in
Europe.1 Nonetheless, it remains to be determined if,
when and to which extent it is possible to use temporally
aggregated data to generate accurate temperature-related
mortality estimates. Therefore, the aim of the present
work is to temporally aggregate a daily temperature and
mortality database from 147 contiguous regions in 16
European countries, and to analyse and contrast the
estimates obtained from daily, weekly, 2-weekly and 4-
weekly data models. To address this aim, we estimated
temperature-lag-mortality relationships by using stan-
dard time-series quasi-Poisson regression models
applied to daily time-series, and compared the results
with those obtained with different degrees of temporal
data aggregation.

Methods
Data sources
We used the spatiotemporally homogeneous mortality
database originally used in Robine et al.19 Further details
are provided in subsequent studies using the same or
similar data.20–23 The dataset included 27,444,314 daily all-
cause mortality counts for the period 1998–2004 in 147
contiguous regions from 16 European countries, repre-
senting their whole population (i.e. rural and urban) of
over 400 million people. These countries are Austria (9
regions), Belgium (11), Croatia (2), Czech Republic (8),
Denmark (1), France (22), Germany (16), Italy (21),
Luxembourg (1), the Netherlands (1), Poland (16),
Portugal (5), Slovenia (1), Spain (16), Switzerland (7) and
the United Kingdom (10 regions in England and Wales
only). There were no missing values in the dataset. We
transformed the daily gridded (0.1◦ × 0.1◦) 2-m temper-
ature data from E-OBS24 into daily regional averages.

Temporal data aggregation
We restricted the analysis to the period spanning from
Monday 5th January 1998 to Sunday 26th December
2004, because it includes N = 2548 days and N/7 = 364
weekly, N/14 = 182 2-weekly and N/28 = 91 4-weekly
Monday-to-Sunday non-overlapping periods. We tempo-
rally averaged (aggregated) the daily regional temperature
(mortality) data into these weekly, 2-weekly and 4-weekly
time periods, and performed separate epidemiological
models for each temporal data aggregation.

Statistical analysis
The statistical analyses were performed in two steps,
following the methodology of Ballester et al.1 In the first
stage, we used quasi-Poisson regression models, which
allow for overdispersed counts of deaths, to calculate the
location-specific temperature-lag-mortality relation in
each European region6–8:
www.thelancet.com Vol 36 January, 2024
Daily: log(E(mort)) = intercept + ns(time, 8 df per
year) + crossbasis(temp; 0–28 days) + dow.

Weekly: log(E(mort)) = intercept + ns(time, 8 df per
year) + crossbasis(temp; 0,1,2,3,4 weeks).

2-Weekly: log(E(mort)) = intercept + ns(time, 8 df per
year) + crossbasis(temp; 0,1,2 2-weeks).

4-Weekly: log(E(mort)) = intercept + ns(time, 8 df per
year) + crossbasis(temp; 0,1 4-weeks).

The models included (i) an intercept, (ii) a natural
cubic spline (ns) of time with 8 degrees of freedom (df) per
year to control for seasonal and long-term trends, and (iii)
a cross-basis function to estimate the exposure-lag-
response association between temperatures (temp) and
mortality counts (mort). The daily data model also
included a categorical variable to control for the day of the
week (dow). The exposure-response function of the cross-
basis was modelled with a natural cubic spline with three
internal knots at the 10th, 75th and 90th percentiles of the
corresponding location-specific daily, weekly, 2-weekly
and 4-weekly temperature distribution. The lag-response
function of the cross-basis in the daily data model
included three internal knots placed at equally spaced
intervals on the log scale, with a maximum lag of 28 days
to account for the long-delayed effects of cold tempera-
tures and short-term harvesting. Regarding the other data
models, the lag-response function was modelled with
integer lag values of 0, 1, 2, 3 and 4 weeks for the weekly
data model; 0, 1 and 2 2-weeks for the 2-weekly data
model, and 0 and 1 4-weeks for the 4-weekly data model.
Model parameters were tested in sensitivity analyses,
showing reasonably small differences in the estimates,
especially in the daily and weekly data models (Table S1).

In the second stage, we used multivariate, multi-
level meta-regression analyses25 to separately pool the
location-specific coefficients obtained in the first step
for each data model. The meta-regression included
country random effects and the location-specific
temperature average and interquartile range as meta-
predictors.26 Separately for each data model, we derived
the best linear unbiased predictions of the
temperature–mortality relationship in each region
from the meta-regression27 to obtain the location-
specific minimum mortality temperature (MMT), and
to transform the regional temperature and mortality
time series into temperature-related mortality numbers
(i.e. attributable number, AN) and fractions (i.e.
attributable fraction, AF), following the methodology
described in Gasparrini and Leone.28 Heat- (cold-)
related mortality was calculated for the days, weeks, 2-
weeks and 4-weeks with average temperatures above
(below) the location-specific MMT in the correspond-
ing data model.29 Regional temperature-related mor-
tality was aggregated to obtain the national and
European burdens.3,4 Similarly, we computed 1000
Monte Carlo simulations of the regional temperature-
related mortality, and separately aggregated them in
3
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each simulation to calculate the 95% empirical CI at
the national and continental levels.7,8,26

Role of the funding source
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report.
Results
Fig. 1 compares the exposure-lag-response association
in the four temporally aggregated data models, i.e. daily,
weekly, 2-weekly and 4-weekly. The cumulative
exposure-response association in the daily data model
depicts the asymmetric V-shaped relation described in
several previous studies,1,3,7–9 with relative risk (RR)
values monotonically increasing for temperatures above
and below the MMT (Fig. 1a). The association in the
weekly and 2-weekly data models is similar to the daily
model, but the 4-weekly model shows a more symmetric
association with small RR values in the central part of
the temperature distribution. At the temperature
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data model is similar to the one from the daily model,
but with RR values sampled at lags every seven days
(Fig. 1b and c). On the one hand, for cold temperatures,
the effect of same-week temperatures is negligible, with
significant RR values starting at lag one week. On the
other hand, for hot temperatures, the RR values
monotonically decrease with the lag, and their effect is
only evident at weeks zero and, to a much lesser extent,
one.

As a general principle, when compared with the daily
data model, differences in the regional values of the
MMT and the RR monotonically increase as the degree
of temporal data aggregation increases (see the Pearson
correlations [r] and mean differences [d] in Fig. 1d–f,
and maps in Figure S1). The relation between the
regional values of the MMT in the daily, weekly and 2-
weekly data models is modest, with Pearson correla-
tions in the range between 0.50 and 0.60, and mean
differences smaller than 0.20 ◦C in magnitude (Fig. 1d).
We found no spatial relation between the MMT of the
daily and 4-weekly data models, possibly due to the
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small RR values in the central part of the temperature
distribution in the 4-weekly data model (Fig. 1a). At the
extremes, the relation between the regional RR values in
the daily and weekly data models is strong and linear
(r = 0.88 for cold and r = 0.82 for heat), which pro-
gressively decreases in the other models with generally
increasing negative mean differences (Fig. 1e and f).

We used these associations, together with the time-
series of temporally aggregated temperature and mor-
tality, to estimate the AN (Table 1, Table S1) and AF
(Tables S2 and S3 and Figs. 2–5, Figures S2–S4) at each
temporal resolution. Fig. 2 shows the AF for each
weekly (red), 2-weekly (blue) and 4-weekly (grey) time
period as estimated by the four temporally aggregated
data models. The daily values in the daily data model
were aggregated to each weekly, 2-weekly and 4-weekly
time period for a direct comparison with the other
models. The Pearson correlations [r] and mean differ-
ences [d] are shown in each panel of Fig. 2, and we used
the 1000 Monte Carlo simulations (see Methods) to es-
timate their uncertainty in Figure S3 as density plots of
Groups of days Data model

Daily Weekly

All Temperatures 329,538 (250,681, 399,741) 296,215 (204,224, 3

Total Cold 290,104 (213,745, 359,636) 265,284 (178,260, 3

Moderate Cold 261,267 (189,315, 326,545) 237,324 (154,039, 32

Extreme Cold 28,836 (21,172, 35,828) 27,960 (21,407, 34,2

Total Heat 39,434 (30,782, 47,084) 30,931 (15,260, 46,3

Moderate Heat 17,281 (12,874, 21,327) 13,224 (5886, 20,57

Extreme Heat 22,150 (16,844, 26,305) 17,707 (8740, 26,252

January 49,773 (33,582, 63,992) 50,125 (36,335, 64,2

February 39,481 (26,133, 50,937) 37,440 (26,369, 48,6

March 31,295 (20,928, 40,778) 28,098 (17,951, 38,4

April 24,463 (17,347, 30,681) 22,577 (12,679, 32,5

May 17,852 (13,269, 21,669) 14,955 (7514, 22,361

June 16,173 (13,303, 18,509) 10,719 (6757, 14,344

July 17,568 (14,414, 20,335) 13,572 (7640, 19,133

August 21,833 (17,886, 25,099) 17,910 (10,062, 25,5

September 14,647 (11,060, 17,711) 11,124 (5539, 16,859

October 23,585 (17,580, 28,610) 20,611 (10,812, 30,5

November 30,547 (20,320, 39,740) 28,620 (18,594, 38,9

December 42,321 (28,544, 54,406) 40,464 (29,122, 51,9

December–February 131,575 (88,572, 169,225) 128,030 (92,075, 16

March–May 73,610 (53,109, 91,294) 65,630 (39,333, 92,5

June–August 55,574 (45,697, 63,766) 42,200 (25,083, 58,0

September–November 68,778 (52,173, 83,342) 60,355 (35,479, 85,1

Year 1998 341,186 (258,644, 414,558) 309,978 (211,406, 4

Year 1999 338,200 (254,975, 412,500) 299,511 (206,637, 3

Year 2000 306,131 (230,102, 373,922) 264,794 (175,751, 35

Year 2001 340,368 (260,272, 412,154) 307,293 (213,290, 39

Year 2002 310,188 (232,172, 378,567) 274,925 (181,135, 36

Year 2003 396,123 (305,675, 474,498) 367,341 (262,035, 4

Year 2004 274,568 (210,794, 330,303) 249,663 (170,367, 3

Table 1: Attributable Number (deaths) by temperature range, month, season

www.thelancet.com Vol 36 January, 2024
the simulated correlations and differences. Although the
relations between the daily, weekly and 2-weekly data
models are generally strong and linear, we also find
systematic differences in the associations. For cold
temperatures, the weekly and 2-weekly data models
systematically underestimate the lowest AF values,
which are the most frequent ones, while they marginally
overestimate the highest ones (Fig. 2b). For hot tem-
peratures, we observe a general underestimation of all
the AF values in the weekly and 2-weekly models,
although differences are generally smaller for the
highest values (Fig. 2c). Finally, regarding the 4-weekly
data model, the systematic underestimation (over-
estimation) of the cold (heat) AF is directly related to the
underestimation of the MMT in many regions (Fig. 1d),
given that this value is used to define the range of
temperatures corresponding to cold and heat days.

Accumulated over time, these systematic differences
generally explain some of the differences in the sea-
sonality (Fig. 3) and year-to-year variability (Fig. 4) of the
attributable mortality. For cold temperatures, the
2-Weekly 4-Weekly

86,523) 280,268 (225,333, 335,723) 296,321 (229,950, 329,004)

53,938) 258,903 (199,524, 320,232) 172,342 (17,683, 300,248)

1,803) 231,848 (175,271, 288,025) 145,785 (3008, 266,541)

46) 27,055 (21,367, 32,186) 26,557 (14,572, 36,509)

79) 21,365 (12,737, 29,361) 123,979 (17,722, 214,544)

7) 9125 (4697, 13,436) 102,166 (3712, 187,872)

) 12,242 (7921, 16,326) 21,813 (14,076, 28,585)

10) 47,462 (36,249, 58,272) 38,802 (13,551, 59,847)

33) 37,570 (28,262, 46,216) 28,118 (5233, 46,859)

37) 29,153 (21,391, 37,096) 14,921 (−4001, 30,215)

18) 21,371 (14,484, 28,171) 11,444 (−2281, 23,142)

) 14,660 (7901, 21,325) 22,283 (13,384, 29,828)

) 8765 (6288, 11,294) 25,571 (8813, 39,552)

) 7900 (6027, 9684) 39,340 (14,108, 60,471)

75) 13,889 (9540, 17,952) 29,324 (5286, 49,167)

) 11,440 (6164, 16,658) 21,851 (11,439, 30,322)

53) 19,897 (11,910, 27,545) 16,162 (5877, 24,673)

96) 30,171 (22,573, 37,821) 18,810 (328, 33,885)

22) 37,991 (28,741, 46,781) 29,696 (8372, 47,083)

4,818) 123,023 (93,033, 151,218) 96,616 (26,859, 153,493)

32) 65,184 (46,789, 83,766) 48,648 (16,504, 73,638)

75) 30,554 (23,807, 37,322) 94,235 (28,741, 149,197)

25) 61,507 (43,726, 79,512) 56,822 (32,423, 75,751)

06,098) 297,251 (236,558, 359,185) 306,520 (224,873, 351,338)

88,498) 284,988 (225,322, 345,150) 300,417 (225,938, 333,189)

2,266) 253,641 (196,717, 310,249) 257,110 (198,110, 286,403)

8,759) 287,607 (229,856, 346,447) 303,447 (237,477, 332,281)

8,014) 258,484 (201,663, 315,092) 273,780 (204,875, 312,480)

71,108) 347,261 (295,702, 398,094) 380,299 (304,600, 418,444)

28,695) 232,642 (183,806, 281,031) 252,675 (203,114, 277,464)

and year in the daily, weekly, 2-weekly and 4-weekly data models.
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Fig. 2: Weekly, 2-weekly and 4-weekly values of the attributable fraction. The weekly (red), 2-weekly (blue) and 4-weekly (grey) values of
the Attributable Fraction aggregated over the ensemble of European regions are shown for all temperatures (a), cold (b) and heat (c) in the daily
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Fig. 3: Seasonality of the attributable fraction. The mean annual cycle of the Attributable Fraction aggregated over the ensemble of European
regions is shown for all temperatures (a), cold (b) and heat (c) in the daily (black), weekly (red), 2-weekly (blue) and 4-weekly (grey) data
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Fig. 5: Difference of the annual attributable fraction between data models. The horizontal axis shows the annual values of the Attributable
Fraction aggregated over the ensemble of European regions for all temperatures (a, d), cold (b, e) and heat (c, f) in the daily data model. The
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seasonality of the AF is generally well reproduced by the
weekly and 2-weekly data models in the winter months,
somewhat underestimated in spring and autumn, and
largely underestimated in summer (Fig. 3b). For hot
temperatures, the AF is generally underestimated from
May to September (Fig. 3c). When both components are
combined, the weekly and 2-weekly data models
correctly reproduce the winter mortality, slightly un-
derestimate the spring and autumn temperature-related
deaths, and underestimate the summer mortality
(Fig. 3a). In absolute numbers, the daily, weekly and 2-
weekly data models estimate an average AN equal
to 131,575 (95% CI 88,572–169,225), 128,030
(92,075–164,818) and 123,023 (93,033–151,218)
temperature-related deaths in winter (December–
February), respectively, and 55,574 (45,697–63,766),
42,200 (25,083–58,075) and 30,554 (23,807–37,322) in
summer (June–August, Table 1). Regarding the 4-
weekly data model, we found generally much larger
differences for the total, cold- and heat-related mortality
in all the months and seasons.

Fig. 4 analyses the year-to-year time-series of the
attributable mortality, showing that the weekly and 2-
weekly data models systematically underestimate the
www.thelancet.com Vol 36 January, 2024
total, cold and heat AF in all the years. To a first-order
approximation, this difference is found to be relatively
constant throughout the years, and therefore the linear
trends are preserved to a very large degree (compare the
straight lines in Fig. 4). In absolute numbers, the daily,
weekly and 2-weekly data models estimate an AN equal
to 329,538 (95% CI 250,681–399,741), 296,215
(204,224–386,523) and 280,268 (225,333–335,723)
deaths on average over the whole period (Table 1). In
relative terms, the weekly and 2-weekly data models
underestimate the total attributable mortality
by −10.11% and −14.95%, respectively, the cold attrib-
utable mortality by −8.56% and −10.76%, and the heat
attributable mortality by −21.56% and −45.82%
(Table S3). Again, we found much larger differences in
annual cold- and heat-related mortality in the 4-weekly
data model.

Fig. 5 performs a more in-depth analysis of the
annual values of the total, cold- and heat AF in the daily
data model, by exploring their relationship with the
absolute differences (i.e. other data models minus daily
model) and the relative differences (i.e. other minus
daily, divided by daily) found in the weekly and 2-weekly
models. Figure S4 additionally shows the differences as
7
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a function of the annual values in the weekly data
model. In all cases, the relation between the annual AF
in the daily data model and differences with the other
models is stronger for the relative differences (Fig. 5d–f,
Figure S4d–f) than for the absolute ones (Fig. 5a–c,
Figure S4a–c), showing that the relative underestima-
tion of the temporally aggregated models monotonically
decreases with the increase in the magnitude of the
annual AF. This general finding holds for all tempera-
tures, cold and heat, and both for the weekly and 2-
weekly data models (compare the Pearson correlations
[r] in panels a–c and d–f). Interestingly, these relation-
ships are found to be linear for all temperatures and
cold, while they are clearly non-linear for heat. We
found that the weekly data model underestimated the
heat-related mortality by only −4.62% in 2003, which
was the year with the highest estimated mortality
(Table S3, see also the rightmost red circles in Fig. 5c, f
and Figure S4c and f). Importantly, the strong non-
linear association found for heat indicates that the un-
derestimation of the heat-related mortality in the weekly
data model would still be relatively small for less
extreme summers (i.e. an underestimation of 10% for a
heat AF equal to 0.0144 in the daily data model, or
0.0126 in the weekly model, see dashed red lines in
Fig. 5f and Figure S4f).
Discussion
To our knowledge, this is the first study to analyse the
effect of temporal data aggregation in time-series
epidemiological studies of temperature and mortality.
We analysed differences in the temperature-related
mortality estimates by temporally averaging (aggre-
gating) the daily temperature (mortality) time-series into
weekly, 2-weekly and 4-weekly data values. We sepa-
rately estimated temperature-lag-mortality relationships
by using state-of-the-art time-series quasi-Poisson
regression models adapted to each of the data aggrega-
tions. Results revealed a progressive increase in differ-
ences with the degree of temporal data aggregation, with
generally increasing underestimations of the MMT, the
RR and the attributable mortality. Regardless of the
magnitude of the differences, we generally found a good
qualitative agreement between the daily, weekly and 2-
weekly data models, with comparable results in terms
of exposure-lag-response association and the weekly,
monthly, seasonal and annual variability of the total,
cold- and heat-related mortality. This was however not
the case of the 4-weekly data model, due to the rather
symmetric exposure-response association, with small
RR values in the central part of the temperature
distribution.

This study revealed important differences between
the cold and heat effects. Although differences with the
daily data model generally increased with the degree of
temporal data aggregation, we found larger differences
for cold in absolute numbers, but for heat in relative
terms. On the one hand, the larger absolute differences
for cold are simply explained by the fact that the effects
of cold temperatures (AF = 0.0751, 95% CI
0.0554–0.0931) are nearly one order of magnitude
higher than those of heat (AF = 0.0102, 0.0080–0.0122;
Table S2). On the other hand, the larger relative differ-
ences for heat are likely related to the distribution of RR
values across the lags, given that the temporal data ag-
gregation is expected to underestimate the day-to-day
variability of the time-series, and possibly, their lagged
short-term associations.1 This is particularly important
for heat, as its health effects are immediate and do not
last for more than a week. Instead, the effects of cold are
distributed over a longer time period, lagged by up to a
month, with a smoother lag-response association.
Moreover, temporally aggregated periods with average
temperature near the MMT, which may simultaneously
include days colder and warmer than the MMT, are
expected to be misclassified as either cold-only or heat-
only aggregated periods. This is shown by the system-
atic underestimation of the lowest AF values by the
weekly and 2-weekly data models (see circles in Fig. 2
with AF > 0 in the daily data model and AF = 0 in the
weekly and/or 2-weekly models). These misclassified
aggregated periods, which are generally expected to in-
crease with the degree of temporal data aggregation,
represent an important fraction of the total, cold and
heat attributable mortality. Given the asymmetric V-
shaped relation between temperature and mortality,
with the MMT displaced towards warm percentiles
(Fig. 1a), the relative contribution of these misclassified
aggregated periods is expected to be higher in the case
of heat-related mortality.

We analysed the sensitivity of the weekly, monthly,
seasonal and annual variability of the attributable mor-
tality to the degree of temporal aggregation of the data.
Although the weekly and 2-weekly data models system-
atically underestimated the lowest AF values, a similar
systematic underestimation was not found for the highest
AF values (Fig. 2). This asymmetry suggests that the
magnitude of differences is smaller during extreme cold
and heat conditions, likely explaining why the underes-
timation of the heat-related mortality was the smallest
during the record-breaking hot summer of 2003,19 i.e. an
underestimation of 4.62% in the weekly data model
(Table S3). Recently, Ballester et al.1 used a large weekly
temperature and mortality database for 35 European
countries to estimate a heat-related mortality burden of
62,862 (95% CI 37,935–88,780) deaths during the year of
2022. Authors compared their estimates based on weekly
data models with those of a previous study using daily
temperature and mortality data in Spain only,30 and found
that the summer heat-related mortality in the country was
underestimated by 6.06% (i.e. 11,324 vs. 12,054). This
underestimation is aligned with the analysis shown in
Fig. 5c, f and Figure S4c and f, given that the weekly data
www.thelancet.com Vol 36 January, 2024
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model used in Ballester et al.1 estimated a heat AF of
0.03014 (0.02066–0.04031) during the year 2022 in Spain,
which would correspond to an underestimation of 4.08%
(3.96–5.05). Conversely, if we use the associations in
Fig. 5c, f and Figure S4c and f, we can speculatively infer
the heat-related mortality burden for 2022 that would
have been estimated by the daily data model. Ballester
et al.1 estimated a heat AF of 0.01252 (0.00767–0.01760)
during the year of 2022 in the 35 European countries,
which would correspond to an underestimation of
10.28% (6.10–21.12). Taking the point estimate,
i.e. −10.28%, we would infer a heat-related mortality
burden of 70,066 (42,283–98,955) deaths during the year
of 2022 in the daily data model.

Although temporally aggregated data models under-
estimate the annual values of the attributable mortality,
absolute differences with the daily data model are found
to be relatively constant throughout the years (Fig. 5a–c,
Figure S4a–c), and therefore, the linear trends of the
annual mortality are generally preserved (compare the
straight lines in Fig. 4). The cancellation of the absolute
differences in the linear trends can for example be used
to develop fit-for-purpose indicators to track the health
impacts of climate change in a larger domain of coun-
tries, regions and cities where daily mortality records are
currently not available as open access data. This property
was for example used in the Lancet Countdown Europe
to track the trend in heat-related mortality from open
access weekly temperature and mortality records.11

We tested three types of alternative models, those
corresponding to weekly, 2-weekly and 4-weekly aggre-
gations of data. In practical terms, our interest was in
the results of the aggregation models that correspond to
data that is more easily accessible from the national
agencies for statistics and public repositories. In most
cases, this usually corresponds to weekly and monthly
aggregated data, which in our framework corresponds to
the weekly and 4-weekly data models. We purposely
designed the aggregations as multiples of seven days to
describe the progressive increase in the differences of
the temperature-related mortality estimates, but also to
analyse these two types of data aggregations. We
generally found that the degree of aggregation of the
monthly data is temporally too coarse to be used for the
purpose of estimating the short-term health effects of
cold and heat on human mortality. Instead, aggregated
weekly time-series of temperature and mortality data
have been shown to represent an approximation of the
estimates obtained in the daily data model.

We finally acknowledge several related scientific
questions that have not been addressed in the present
work, and that will be considered in future studies.
Firstly, we used data from a large ensemble of regions in
order to analyse spatial differences in the relationship
between the four data models (Fig. 1d–f, Figures S1 and
S2). Despite the similarities in temperature-lag-
mortality associations across worldwide locations,2 our
www.thelancet.com Vol 36 January, 2024
results cannot be immediately generalised to other
continents without comparing the data models cali-
brated with data representing other climate regimes and
socioeconomic and demographic settings. Moreover,
regions here analysed are relatively large, with an
average population of 2.7 million inhabitants, and
therefore results cannot be immediately generalised to
smaller regions or cities with lower mortality counts, or
stratified by sex and age groups. Secondly, we did not
consider the short-term effects of ambient temperatures
on other health outcomes, such as hospital admissions
or occupational accidents.31 In these cases, the lag-
response association is sometimes simpler and/or
distributed along a shorter range of lags, and therefore
the aggregation models are expected to behave differ-
ently. Finally, we did not analyse the short-term health
effects of other environmental exposures, such as air
pollution, which will be assessed in a separate study. In
many cases (e.g.,32), models analysing the short-term
health effects of air pollution include terms controlling
for temperature and other climate variables, and there-
fore, they are necessarily more complex than those here
analysed.

In all these cases, temporal data aggregation is yet an
unexplored option that, if properly justified with sensi-
tivity analyses, has the potential to circumvent current
data access restrictions. The present work represents a
first reference study towards this aim. This approach has
the potential to complement existing, large-scale, access-
restricted, data networks, and to facilitate data access for
research, translation and policy-making by using com-
plementary sources of data not explored to date.
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