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ing review was to better understand how climate change is impacting rheumatic diseases, either directly or
indirectly, as well as how climate change affects the geographical distribution of infectious diseases with
arthritogenic manifestations, which will impact rheumatic disease care.
Methods: A scoping review was conducted according to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses for Scoping Reviews (PRISMA-ScR).
Results: 149 papers were identified regarding the impact of climate change related exposures on patients
with rheumatic diseases. The most common climate-related exposure was air pollution, with other factors
including excess heat or cold, precipitation, exposure to ultraviolet light, and malnutrition. The vast majority
of studies identified associations of climate related factors with increased disease activity or incidence. 105
studies were identified that addressed the influence of climate change on the observed or projected changes
in the geographical range of diseases with arthritogenic manifestations spread by arthropods or environmen-
tal vectors. The majority of studies focused on dengue, Lyme disease and chikungunya and found an increase
in the geographical range with climate change. A grey literature search of rheumatology organization web-
sites suggests that the field of rheumatology remains inadequately prepared for climate change impacts.
Conclusions: The existing literature was summarized and gaps were highlighted that are deserving of further
exploration such that rheumatologists can be better prepared to care for their patients, educate them on
potential health harms, and advocate for policies to proactively address the climate crisis.
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1. Introduction year on record, emissions continue to trend upwards [2]. Unprece-
dented upticks in heat-related deaths, food insecurity due to drought,
and life-threatening infectious diseases from climate change are all
being amplified in the face of inadequate action. The climate emer-
gency is driving further social disparities, as impacts on human
health disproportionately affect those who have contributed least to
this issue [3,4,5].

Although the impacts of climate change and resultant extreme
weather events on human health conditions are reasonably well

Climate change, driven by anthropogenic emissions, poses an
existential threat to humanity [1]. Despite 2023 being the hottest

Abbreviations: BMI, body mass index; CO, carbon monoxide; CTD-ILD, connective tis-
sue disease-related interstitial lung disease; CONUT, Controlled Nutritional Status
Score; JIA, juvenile idiopathic arthritis; KD, Kawasaki disease; NHANES, National
Health and Nutrition Examination Survey; NRI, nutritional risk index; 03, ozone; OA,

osteoarthritis; PM2.5, particulate matter 2.5 micrometers or smaller; PM10, particulate
matter 10 micrometers or smaller; PRISMA, Preferred Reporting Items for Systematic
Reviews and Meta-Analyses; NO2, nitrogen dioxide; RA, rheumatoid arthritis; SSc,
scleroderma and systemic sclerosis; SpA, spondyloarthropathy; SLE, systemic lupus
erythematosus; UV, ultraviolet
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documented [6], specific influences on rheumatic diseases remain
incompletely characterized [7]. Furthermore, defining a causal role
for climate change in rheumatic diseases may be less obvious, as the
underpinnings of autoimmunity and inflammation are indeed com-
plex and the evolution of disease more insidious in nature. Evidence
suggests that autoimmune diseases are on the rise, as reflected in
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part by the increasing prevalence of positive antinuclear antibody
(ANA) blood tests that can be associated with diseases such as sys-
temic lupus erythematosus [8,9]. Environmental factors, such as air
pollution driven by the burning of fossil fuels and wildfires, may initi-
ate or trigger flares of autoimmune and inflammatory diseases.
Extreme weather events, food insecurity and malnutrition, forced
migration, and ecoanxiety are some of the downstream consequen-
ces of climate change that will impact rheumatic diseases unfavor-
ably [10].

The changing climate is creating conditions that are altering the
global footprint of various infectious diseases, including many vec-
tor-borne diseases and infections with arthritogenic manifestations
that can be mimickers or catalysts of rheumatic diseases. Dengue,
chikungunya and Lyme disease are growing threats that are rapidly
becoming endemic in new areas. Excess cases of coccidioidomycosis
are being driven by drought conditions that facilitate transmission.
Understanding how climate change is impacting disease transmission
and causing extended seasonality will enable more effective adapta-
tion strategies to mitigate health impacts [11].

The global rheumatology community needs to be prepared for
how our rapidly changing environment will impact rheumatic dis-
eases as well as lead to an increased infectious disease burden, which
will complicate diagnosis and management of our largely immuno-
suppressed patient population. Rheumatologists need to be able to
identify and address the impacts of climate change on rheumatic dis-
eases to enhance patient care and help them prepare for anticipated
downstream consequences [10].

This scoping review aims to investigate the intersections between
climate change and rheumatic diseases, as well as their potential
ramifications on infectious diseases with arthritogenic manifesta-
tions. Specifically, the objectives are: (1) to elucidate the current
understanding of the relationship between climate change, including
extreme weather events and air pollutants derived from fossil fuels,
and its impact on various rheumatic diseases; 2) to explore the asso-
ciation between malnutrition (an anticipated consequence of climate
change) and its influence on the onset, severity, and outcomes of
rheumatic diseases; 3) to examine the evolving changes in geograph-
ical distribution of infectious diseases with arthritogenic manifesta-
tions in the context of climate change-induced environmental shifts;
4) to identify gaps in existing literature and areas for future research
regarding the effects of climate change on rheumatic diseases and
infectious diseases with rheumatic manifestations; and 5) to provide
valuable insights for rheumatologists to better understand and
address the implications of climate change on patient care and public
health strategies related to rheumatic diseases.

2. Methods

This review was conducted according to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020
guidelines [12] and the PRISMA Extension for Scoping Reviews
(PRISMA-ScR) [13].

2.1. Research questions identified

Anticipating the various dimensions of climate change impacts
that rheumatologists might encounter globally, this scoping review
employed a search strategy divided into 1) climate change impacts
on rheumatic diseases, and 2) climate change impacts on infections
with arthritogenic manifestations.

Specifically, the following two research questions were explored:

(1)What is known about the relationship between rheumatic dis-
eases and a) climate change (including extreme weather events),
b) specific pollutants (including from fossil fuels that contribute to
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Table 1
Summary of search terms.

Category Included conditions or infections

Climate change Climate change, global warming, greenhouse effect green-
house gas, extreme temperature, heat wave, hurricanes,
cyclones, tropical storms, floods, drought, wildfires,
ultraviolet light, air pollution, malnutrition

Systemic lupus erythematosus, rheumatoid arthritis, pso-
riatic arthritis, scleroderma, juvenile inflammatory
arthritis, childhood Lupus, Sjogren’s, myositis, gout, pol-
ymyalgia rheumatica, vasculitis, Kawasaki's, reactive
arthritis, ankylosing spondylitis, interstitial lung disease
associated with connective tissue disease, osteoarthritis,
fibromyalgia, Behcet's, sarcoidosis

Alphavirus, chikungunya virus, Sindbis virus, Ross River
virus, O'nyong’nyong, Semliki Forest virus, Mayaro
virus, Barmah Forest virus, Dengue virus, Borrelia, Rick-
ettsia, Aspergillus, Histoplasma, Cryptococcus, Cocci-
dioides, Lyme

and rheumatic
diseases

or infections with
rheumatic
manifestations

climate change), and c¢) malnutrition (that can be a consequence
of climate change) on rheumatic disease?

(2)What is known about how climate change may alter geographic
ranges of infectious diseases that have arthritogenic manifesta-
tions?

2.2. Search strategy

For the first research question, search terms were used relating to
climate change or related exposures and rheumatic diseases. A vari-
ety of rheumatic diseases were included with climate change and
related exposures as search criteria (hurricanes, cyclones, tropical
storms, heatwaves, floods, drought, wildfires, and air pollution) in
order to capture a larger number of studies that would be pertinent
to the primary research question (Table 1).

The second research question sought to explore the influence of
climate change on the evolving risk of infectious diseases with arthri-
togenic manifestations. The search criteria included studies or evi-
dence of climate change factors associated with viral, bacterial, or
fungal agents with arthropod or environmental spread that can cause
arthritic manifestations (Table 1) [14-16]. The studies selected for the
review process specifically addressed a change in geographical range
associated with climate change.

The electronic databases PubMed and Embase were queried on
July 5th, 2023, for the years 2008 to 2023. Reviews, systematic
reviews, meta-analyses, and editorials were excluded. Detailed
search queries are available in Appendix A. A targeted search in the
Scopus database for relevant articles published in the Journal of Cli-
mate Change and Health was added on September 5th, 2023, as this
journal includes pertinent literature but is not included in the Med-
line (PubMed) and Embase journal coverage lists.

A targeted search of the gray literature was performed employing
two different strategies. A Google search was performed with the
term “climate change” matched sequentially with each of the terms
for rheumatic diseases and infections or vectors listed in Table 1. The
search targeted original data since 2008 addressing the research
questions within the first 5 screen pages of findings. A second
approach consisted of reviewing the websites of 7 major interna-
tional rheumatology organizations in September 2023 for any
articles, position statements, newsletters, or podcasts related to cli-
mate change or related exposures.

2.3. Study selection
The Covidence systematic review platform was utilized for study

screening and data extraction. Two authors (TRK and TB) indepen-
dently screened the citation titles and abstracts for inclusion and
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Table 2
Inclusion and Exclusion Criteria.
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Category Inclusion criteria Exclusion criteria
Concept Involves climate change or a climate change-related exposure Does not involve climate change or a climate change-related exposure
Specific rheumatic diseases included per methods Specific rheumatic diseases were not identified per methods
Impact on the onset, severity, serologies, outcomes or care of rheumatic dis- No description of impact of the onset, severity, serologies, outcomes or care of
eases noted rheumatic diseases
Specific infectious diseases or vectors included per methods Specific infectious diseases or vectors not included per methods
Describes a change in geographic range of infectious disease of vector related ~ Does not describe a change in geographic range of infectious disease of vector
to climate change related to climate change
Language  English Not English

Timeframe 2008-2023
Article Articles with full text

Prior to 2008
Articles with abstract only, conference posters only, case reports or full text
not available

exclusion criteria. Any discrepancies were resolved by a 3rd reviewer
(LS) (Table 2). These two authors (TRK and TB) then reviewed the full
text for papers that met inclusion criteria and a third author (LS)
resolved any discrepancies.

2.4. Data abstraction

A data abstraction form was employed to record publication date,
geographical location, study design, climate change-related exposure,
rheumatic disease, organ, or laboratory test affected, infectious dis-
ease or vector, and outcomes. The full text for papers were indepen-
dently reviewed by authors (TB, TK, LS, CD), with discrepancies
resolved by the reviewers with a final decision by one author (TB).
Results were organized for analysis using an Excel spreadsheet.

3. Results

A total of 12,077 records were identified with the database litera-
ture search using terms that pertained to climate change, rheumatic
diseases, and infectious diseases with arthritogenic manifestations
(Fig. 1). Based on the eligibility criteria, 254 studies were identified
for data extraction.

The study years for the papers regarding rheumatic diseases and
infections are shown in Fig. 2. There was a steady increase in papers
in recent years, particularly those focused on rheumatic diseases.

The categorization of geographical locations of the studies was
adapted from the United Nations M49 Standard of regions and subre-
gions [17] with the addition of the Mediterranean Basin [18] (Fig. 3).
For research question 1, the included publications on rheumatic dis-
eases consisted of 149 studies. Most of the studies were from Asia
(N=52,35 %), and the Global South was notably less well represented
(Fig. 3A and Appendix B). For research question 2, the included publi-
cations on infectious diseases with arthritogenic manifestations con-
sisted of 105 studies, with the largest number of studies from North
America (N =30, 29 %) (Fig. 3B and Appendix C).

3.1. Rheumatic diseases

One hundred and forty-nine papers were identified regarding the
impact of climate change related exposures on patients with a variety
of rheumatic diseases [19-167]. Of the seventeen different rheumatic
diseases included, the most well represented conditions were rheu-
matoid arthritis (RA), systemic lupus erythematosus (SLE), Kawasaki
disease (KD) and systemic sclerosis (SSc) (Appendix D). Studies were
conducted in a wide variety of geographical locations. Africa was
underrepresented, with only 1 study.

The impacts of climate change related exposures on rheumatic
diseases are listed in Table 3. The most common exposure was air
pollution, with other factors including excess heat or cold, precipita-
tion, exposure to ultraviolet (UV) light, and malnutrition. Of note no

papers were identified that specifically focused on extreme weather
events (i.e., hurricanes, floods, drought) from climate change.

Each study was reviewed to determine if there was an impact of
the factors related to climate change on disease activity or incidence.
Indicators of disease activity included changes in direct measures of
disease activity, changes in the rate of hospital admissions and/or
ambulatory visits, changes in laboratory serologies, and changes in
the mortality rates. Most studies demonstrated an association with
climate related factors and increased disease activity or incidence.

The specific climate related factors associated with each rheu-
matic disease are listed in Table 4. The table includes a guide to refer-
ences for each disease. More details about individual studies can be
found in Appendix B. Key studies that illustrate the interaction
between climate change driven environmental factors and rheumatic
diseases are discussed below.

3.1.1. Rheumatoid arthritis

3.1.1.1. Pollution. Seventeen studies on RA found an association of
pollution with the incidence, prevalence, and severity of disease,
including disease activity and frequency of disease flares (Table 4).
Six of these studies were from China, Taiwan, and South Korea, coun-
tries which have exceeded the WHO’s recommended levels for
PM2.5 pollutant concentrations according to the World Air Quality
report [168]. Regarding the onset of RA, anti-citrullinated peptide
antibodies are highly specific autoantibodies in RA. Four studies
[25,33,34,30] found an association with air pollution, specifically
PM2.5, with the onset (as determined by the development of anti-cit-
rullinated peptide antibodies or clinical diagnosis) or severity of
rheumatoid arthritis. Four studies found no association of pollutants
with RA incidence [50,51], RA flare [49], or autoantibodies and joint
symptoms [48].

3.1.1.2. Malnutrition. Food insecurity and malnutrition are predicted
to become increasingly problematic, due to economic hardship exac-
erbated by extreme weather events and forced migration as well as
by other factors related to climate change, such as declining crop
yields [169,170]. Six studies on malnutrition and RA were identified.
In a cohort of 1976 RA patients from the NHANES database, the prev-
alence of malnutrition ranged from 18.8 % (based on the Controlled
Nutritional Status Score, CONUT) up to 26.6 % (based on the nutri-
tional risk index, NRI) and was strongly associated with an increased
risk of all-cause mortality [36]. In a Brazilian cohort, almost one-third
of patients demonstrated nutritional impairment which was associ-
ated with increased disease activity and loss of function [38].

3.1.1.3. Temperature changes and UV exposure. Temperature changes
had mixed effects on RA, with two studies citing worsening arthritis
with cold exposure [43,44] and one study showing associations of
extremely high diurnal temperature ranges with an increased risk for
RA hospitalizations [45]. A review of 14,401 patients with rheumatic
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Duplicate conference poster (n = 22)

Abstract only insufficient info (n = 85)

Not target disease or infection (n = 1)

Not focused on change range infection (n = 225)

Studies included in review (n = 254)

Fig. 1. PRISMA flow diagram of selection of studies for inclusion in the scoping review.

diseases found that individuals living in areas with the highest heat
vulnerability index had 1.64 times greater odds of 4 or more hospital-
izations [87]. Three studies, including the Nurses’ Health Study cohort
and the NHANES database, showed no clear association of UV expo-
sure with RA [52-54].

3.1.2. Systemic lupus erythematosus

3.1.24. Pollution. Twelve studies reported positive associations
between pollution (short- and long-term exposure) and SLE. In terms
of short-term pollutant exposure, an evaluation of 237 SLE patients
in Montreal showed that short term variations in PM2.5 levels were
associated with disease activity as reflected by anti-dsDNA levels and
cellular casts [60]. A large multicenter database with 8552 SLE
patients in China found that PM2.5 and NO2 were risk factors for
lupus nephritis within one month after exposure [58]. Long-term pol-
lutant exposure demonstrated an exposure-response association
with CO, NO2 and PM2.5 [59]. Several studies showed a positive asso-
ciation of pollutants with risk for SLE hospitalization [55,56,62,63,65].

One study found a positive association of SLE hospitalizations not
only with NOx pollution in the air, but also in water, when studying
districts with concentrated chemical industry emission areas [56].
Another study did not find an association between ANA positivity
and the pollutants NO2, PM2.5 or O3 using Bayesian Kernal machine
regression, however notably these ANA positive subjects did not
have a known diagnosis of SLE [72].

3.1.2.5. UV exposure and temperature. Ultraviolet radiation exposure
has been associated with flares of SLE symptoms, in particular photo-
sensitive rashes in patients with acute or subacute cutaneous lupus
[171,172]. However, risk for the development of SLE due to UV expo-
sure has been less well characterized. In a case control study of 258
SLE patients, an association was seen with outdoor work in the 12
months preceding the diagnosis of SLE (OR 2.0; 95 % CI 1.1, 3.8) with
the strongest effect observed in those who reported a blistering sun-
burn or rash following exposure to midday sun (OR 7.9; 95 % CI1 0.97,
64.7) [69]. The Nurses’ Health Study looked at 6,054,665 person-years
of UV exposure and identified 297 incident SLE cases. They found that
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Fig. 3. Geographical locations of the research studies on rheumatic diseases (A) and infectious diseases with arthritogenic manifestations (B) with number of studies and percentage

of regions.

women in the highest tercile of UV exposure had an increased risk of
malar rash (HR 1.62 [95 % CI 1.04—2.52]); however the risk of overall
SLE was not significantly increased when comparing the highest to
lowest UV exposure tercile [70]. A study conducted in Southern
France showed strong positive correlations between lupus flares and
maximum temperature increase, with most lupus flares occurring in
the spring season [71]. However, other studies did not find this same
association [73-75].

3.1.2.6. Malnutrition. The prognostic nutritional index (PNI) and
nutritional risk index (NRI) are useful as screening tools for patient
prognosis in several diseases. The PNI and NRI were significantly
lower in patients with active vs. inactive SLE (p < 0.001 and p = 0.012,
respectively) suggesting that nutrition status can impact SLE disease
activity [67]. The prevalence of obesity is rising and may be associ-
ated with nutrient deficiencies that could contribute to inflammation.
In a cross-sectional study of 130 SLE patients, patients with excess
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Table 3 weight (BMI > 25 kg/m2) demonstrated a higher clinical activity

Change in rheumatic disease activity from climate change related exposures.

score using the Mexican SLEDAI (Mex-SLEDAI) [68].

Temperature: 1
UV light: 1

Climate exposure  Total # studies Disease activity or incidence .
(# studies) 3.1.3. Kawasaki disease
Kawasaki disease is a multi-system vasculitis that predominantly
Increased Unchanged Decreased .. . . s
occurs in infants and young children and is thought to have an envi-
Air pollution 87 74 12 1 ronmental trigger. For example, a consistent pattern of large-scale
Malnutrition 21 21 0 0 wind currents originating in central Asia and traveling across the
Temperature 13 10 3 0 . . . .
UV light 9 6 1 2 North Pacific seemed to be temporally associated with new hospital
UV light and 6 2 3 1 admissions of KD cases [100]. An increased occurrence of KD was
temperature identified during months with warmer night-time temperatures
A‘i POH‘H“;“ and 3 3 0 0 which in turn correlates with southerly and south-westerly winds
emperature . . . . . . }
Weather system 9 5 0 o [102]. Six studies suggested a possible rel;a.tlonshlp of KD with prena
changes* tal and postnatal exposure to several different pollutants. Only 3
Precipitation 1 1 0 0 studies failed to establish any correlation between pollutants and KD
Climaze* change 0 0 0 0 when examining the short-term exposure of patients to fine particu-
Total 142 119(84%) 19(13%) 4(3%) late matter [103,97,102].
* El Nino Southern Oscillation.
In 7 studies, disease activity or incidence could not be determined. 3.1.4. Systemic sclerosis
Two studies explored the correlation between environmental pol-
lution and SSc disease severity. One study suggested the possibility of
Table 4
Impact of climate factors on rheumatic diseases.
Rheumatic disease Total # studies Disease activity or incidence
[Ref #] (# studies)
Increased by factor Unchanged by factor Decreased by factor
Rheumatoid arthritis (RA) 36 Air pollution: 17 Air pollution: 4 UV light: 1
[19-54]* Malnutrition: 6 UV light: 1
Temperature: 3 UV light and temperature: 1
Precipitation: 1
Systemic lupus erythematosus (SLE) 21 Air pollution: 11 UV light and temperature: 2 UV light and temperature: 1
[55-75] Malnutrition: 2 Air pollution: 1
UV light 2:
Air pollution and temperature: 1
UV light and temperature: 1
Multiple diseases™* 16 Air pollution: 10 Air pollution: 2
[76-91]* Temperature: 2
Air pollution and temperature: 1
Kawasaki 12 Air pollution: 5 Air pollution: 3
[92-103] Weather systems: 2
Air pollution and temperature: 1
Temperature: 1
Scleroderma 12 Malnutrition: 9 Air pollution: 1
[104-115]* Air pollution: 1
Sjogren’s 7 Air pollution: 6
[116-122] UV light and temperature: 1
Myositis 6 Air pollution: 3
[123-128] UV light: 3
Spondyloarthropathy (SpA) 5 Air pollution: 3
[129-133]* Temperature: 1
Gout 5 Air pollution: 3
[134-138] Temperature: 2
Osteoarthritis (OA) 4 Air pollution: 2 Temperature: 2
[139-142]
Childhood lupus 4 Air pollution: 4
[143-146]
CTD related ILD# 4 Air pollution: 3 Air pollution: 1
[147-150]
Juvenile inflammatory arthritis (JIJA) 3 Air pollution: 2 Air pollution: 1
[151-153]
Behcets 3 Malnutrition: 2
[154-156]*
Others™** 11 Air pollution: 4 Temperature: 1 UV light: 1
[157-167]* Malnutrition: 2

* Includes studies in which disease activity or incidence could not be determined.
** Multiple diseases include: RA (9), SLE (8), scleroderma (6), SpA (6), Sjogren (5), myositis (5), OA (5), UCTD (3), vasculitis (1), gout (1).
# Connective tissue disease (CTD) related interstitial lung disease (ILD).
*** Others: fibromyalgia (3), arthritis (2), pediatric CTD (2), vasculitis (2) CTD (1), sarcoid (1).

6
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Fig. 4. Number of studies showing infectious diseases with arthritogenic manifestations with a change in range by geographic region. LATAM=Latin America.

adverse disease progression and lung involvement of patients with
SSc on exposure to benzene [115], while another described more
severe internal organ involvement on exposure to particulate matter
[104].

Nine studies investigating the relationship between malnutrition
and SSc detected a significant association between malnutrition and
systemic involvement including skin, pulmonary and gastrointestinal
manifestations. Significantly lower bone density was also noted
among patients with SSc having malnutrition [108]. In another study,
high nutritional risk detected by the Malnutrition Universal Screen-
ing Tool (MUST) was demonstrated to predict mortality among
patients with SSc [105].

3.1.5. Sjogren’s

A time-series study conducted in Hefei, China showed significant
associations between extreme environmental exposures (i.e., long
sunshine days, extreme cold, and high humidity) with an increase in
outpatient visits for Sjogren’s [122]. Six other studies showed positive
correlations between air pollution and Sjogren’s. In particular, two
studies showed correlations between air pollution and ocular surface
damage [116] or tear lipid layer thickness [120]. Additional studies
reported that exposure to CO, NO and CH4 were associated with a
higher risk of incident Sjogren’s, PM2.5, PM10, NO2, and CO corre-
lated with an elevated risk of hospitalizations [117,118], and PM2.5
and NO2 were associated with increased risk for outpatient visits
[119].

3.1.6. Other diseases

3.1.6.7. Connective tissue disease-associated ILD (CTD-ILD). Four stud-
ies investigated the impact of air pollution on CTD-ILD. One found
that among patients with RA, there was a higher risk of the develop-
ment of RA-ILD in those with higher levels of exposure to PM2.5
[147]. Another demonstrated a higher rate of hospitalization for RA-
ILD with higher levels of exposure to PM2.5, PM10, SO2, and NO2
[149]. Among patients with SSc-ILD, high levels of exposure to O3
were associated with more severe ILD at diagnosis as well as progres-
sion at 24 months [148]. However, a review of patients with several

rheumatic conditions (SLE, RA, SSc, dermatomyositis/polymyositis)
found a decreased risk of development of ILD with higher exposure
to 03 in patients with SLE [150].

3.1.6.8. Spondyloarthritis. Spondyloarthritis encompasses a group of
diagnoses that includes ankylosing spondylitis, psoriasis and psori-
atic arthritis, reactive arthritis, and inflammatory bowel-disease
related arthritis. In two studies, exposure to air pollution (specifically
PM2.5 and CO) was associated with higher disease activity of anky-
losing spondylitis [130,131]. Another study found that psoriasis
patients had more flares in their skin disease when exposed to higher
levels of air pollution before their clinical visits [129]. Two studies
also suggested that malnutrition (in the form of high fat diet or nutri-
tional deficiencies) may play a role in SpA disease activity [131,133].

3.1.6.9. Gout. Three studies found that air pollution was associated
with an increased incidence of gout and/or gout flares [134-136].
Two studies found that higher temperature was associated with a
higher risk of developing a gout attack [137,138].

3.1.6.10. Childhood lupus. There were four studies, all based out of
Brazil, that assessed the relationship between disease activity of
childhood lupus (clinical organ involvement and/or serologic
markers) and air pollution exposure. Higher exposures to PM10,
NO2, and CO were associated with higher lupus disease activity (SLE-
DAI-2 K) [143] and increased PM2.5 and NO2 exposure was associ-
ated with higher markers of renal disease [144].

3.2. Infectious diseases with arthritogenic manifestations

One hundred and five studies were identified that addressed the
influence of climate change on the observed or projected change in
the geographical range of diseases with arthritogenic manifestations
spread by arthropods or environmental vectors [173-277]. The stud-
ies were distributed throughout the world (Fig. 4), though the spec-
trum of diseases encountered in each region varied considerably.
Most of the studies tracked temperature and precipitation due to cli-
mate change as the primary variables. The focus was on changes in
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Table 5
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Infectious diseases with arthritogenic manifestations with changes in the geographical range.

Infection Total # studies Change in geographical range

[Ref #] (# studies)
Increased  Variable or unchanged  Decreased

Dengue 35 32 3 0
[173-207]

Borrelia (Lyme disease) 28 19 9 0
[208-235]

Dengue and Chikungunya 16 8 8 0
[236-251]

Coccidioidomycosis 6 6 0 0
[252-257]

Chikungunya 5 4 1 0
[258-262]

Rickettsia (RMSF) 3 1 1 1
[263-265]

Others* 12 7 5 0
[266-277]

Total 105 77 27 1

*Others includes Aspergillus (1), Mayaro virus (2), Sindbis virus (1), Ross River virus (2), Barmah Forest
virus (1), Borrelia and Rickettsia (3), Cryptococcus (1), Tick/fungal (1). No studies were identified regarding
Semliki virus, O'nyong nyong virus, or Histoplasmosis.

the expected ranges of these diseases since rheumatologists need to
be concerned about new or increased risks of infection in their region
of practice.

The majority of studies focused on dengue, Lyme disease and chi-
kungunya. An increase in the geographical range with climate change
was found with most infections (Table 5). A detailed listing of the
papers can be found in Appendix C. Some of the key studies that illus-
trate the changes in range are discussed below.

3.2.1. Dengue

Dengue, the most common infection noted in the papers that
were reviewed, is transmitted between humans by female Aedes
mosquitoes which are projected to expand in range to more temper-
ate areas and higher altitudes with warming global temperatures.
One study estimated the global population at risk for dengue could
expand by 1.6 billion by 2070 using more severe climate scenarios
[189]. As noted in Fig. 4, every geographical region in this review
included studies on dengue, with an increased range noted in 31 of
34 papers. At particular risk of range expansion will be the temperate
areas of North America and Europe [189,186].

3.2.2. Borrelia (Lyme disease)

Lyme disease is caused by Borrelia burgdorferi and transmitted to
humans by ixodid ticks. Although tick survival depends on several
factors, temperature is a key determinant of the survival of ixodid
populations [219]. Twenty of twenty-nine modeling studies pro-
jected an increase in suitable areas for ixodid ticks with climate
change, particularly in North America and Europe [231,221,229].

3.2.3. Coccidioidomycosis

Coccidioidomycosis (Valley fever) is a fungal disease that is
endemic to the southwestern United States and parts of Central and
South America. Human illness is contracted by inhaling fungal spores.
The growth cycles of Coccidioides spp. are driven by a complex bal-
ance of temperature and precipitation [252]. The six studies in this
review, all from North America, predicted a marked increase in the
expected range of coccidioidomycosis in the western United States
with climate model projections.

3.2.4. Chikungunya

Chikungunya is a mosquito-borne arboviral disease transmitted
by Aedes species mosquitoes. Historically confined to tropical set-
tings, it can spread to other regions with favorable combinations of

temperature and rainfall. Studies regarding chikungunya, often in
combination with dengue, were found in most regions of the world.
Many of the studies project a spread in its geographical range with
future climate scenarios, particularly to China, sub-Saharan Africa,
South America, the United States, and continental Europe [258-260].
However, nine of the twenty-one studies including chikungunya
noted variable changes in range, since climate change is expected to
increase temperatures beyond the suitable range for transmission in
many parts of the world [247,246].

3.2.5. Rickettsia (RMSF)

Rocky Mountain spotted fever (RMSF) is a life—threatening fulmi-
nant tick-borne infection caused by Rickettsia rickettsii. Projecting cli-
mate induced changes in the geographical distribution of RMSF is
complex, since its propagation is also impacted by land cover, land-
scape structure and socio—economic factors [264]. Of the six studies
found in the review, 2 projected an increased range and 3 noted vari-
able changes. A study in Brazil estimated a reduction of areas suitable
for ticks of the Amblyomma cajennense species complex, vectors for
spotted fever, due to excess heat [263].

3.2.6. Other infections

Nine studies investigated various other infections, including
aspergillus, Mayaro virus, Sindbis virus, Ross River virus, Barmah For-
est virus and cryptococcus. Six papers showed an increase in pro-
jected range with climate change, while 3 showed variable changes.
Of note, no studies were identified that described changes in geo-
graphical range with climate change for Semliki Forest virus, O'nyong
nyong virus or histoplasmosis.

3.3. Gray literature search

In the search of the websites of seven major rheumatology associ-
ations, a few contained information about climate change (Table 6).
Two notable findings were a plan for a sustainable annual conference
by the British Society for Rheumatology and a well-organized and
extensive position statement by the Australian Rheumatology Associ-
ation.

4. Discussion

Rheumatic diseases are chronic conditions affecting a growing
number of individuals worldwide, with significant impacts on
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Table 6
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Review of climate change issues on rheumatology organization websites (accessed September 2023).

Organization Climate change text word search Climate change content in articles, position
statements, podcasts, newsletters
American College of Rheumatology e 2 climate presentations at 2022 ACR Convergence e 1 podcast on environmental impacts on rheumatic
meeting diseases
® 2 news articles on the impact of storms
¢ 1 news article on chikungunya
Canadian Rheumatology Association) e 1 article on a scientist active on climate issues e N/A
British Society for Rheumatology e N/A e Comprehensive sustainability plan for 2023 annual
conference
European Alliance of Associations for Rheumatology e N/A e N/A
Asia Pacific League of Associations for Rheumatology ¢ N/A e N/A
African League of Association for Rheumatology e N/A e N/A
Australian Rheumatology Association e 60 results on climate change issues e Comprehensive position statement

morbidity and mortality, and with substantial costs to society
[8,278,279]. It is estimated that 1 in 10 citizens in the UK has an auto-
immune condition [280]. In addition, it is well documented that sig-
nificant health disparities occur, particularly in diseases such as SLE
[281]. Based on findings from this scoping review, climate change
may increase known exposures associated with triggering autoim-
munity, leading to increases in the incidence and severity of several
rheumatic conditions, as well as drive an increased range of infec-
tions with arthritogenic manifestations. These effects will likely be
more pronounced in socially vulnerable groups. There is a lack of
research data linking the effects of climate change mechanistically to
specific rheumatic or immunologic disease processes, and further
investigation is needed.

Autoimmunity has an insidious onset, with complex and multi-
step pathogenesis involving the interplay of genetic predisposition,
epigenetic changes, environmental exposures, infections and altera-
tions in the microbiome. Furthermore, socioeconomic factors have
been closely associated with rheumatic disease severity, such as pov-
erty, poor access to health care, and race/ethnicity, leading to disease
initiation and perpetuation [282-287]. As this scoping review does
not comprehensively address the interaction between these factors
and all the potential impacts of climate change in rheumatology, we
assert that there are many remaining gaps to be filled. As social dis-
parities are increasing as a direct result of climate change, many
more rheumatic patients with high social vulnerability stand to be
adversely impacted [87].

4.1. Impacts of climate change factors on rheumatic diseases

An initial attempt to capture the themes of climate change and
its direct impacts (i.e. extreme weather events) across a wide variety
of rheumatic diseases yielded minimal publications. By expanding
the search to include terms capturing air pollution (driven mostly
by fossil fuels which cause climate change), malnutrition (an antici-
pated consequence of climate change), temperature changes (but
not necessarily extreme heat), and UV radiation, 149 studies were
identified. This review primarily focuses on indirect climate change
factors. These findings are consistent with a recent scoping review,
stating that air pollution and changes in temperature were the most
extensively investigated climate change factors [288]. Respiratory
and cardiovascular diseases were the best represented medical
conditions in the literature, perhaps given more direct and obvious
mechanistic links of these climate change factors to disease patho-
genesis [288].

Findings from this scoping review primarily encompassed the role
of air pollutants (90 out of 142 studies, 63 %), with the vast majority
showing an increase in rheumatic disease incidence and severity. Air
pollution can induce systemic inflammatory responses via a variety
of mechanisms [289] and has even been identified as a potential risk
factor for the development of rheumatic disease [290]. There was a
preponderance of studies from Asia on air pollution (39 out of 52,
75 %). Of note, the WHO global air quality guidelines from 2021 state
that the limits for PM2.5 and PM10 are 15 ug/m® and 45 ug/m?,
whereas the limits in China are notably higher at 35 ug/m® and 50
ug/m?, respectively [291]. Air pollution caused by heavy industry and
mining are likely driving more severe rheumatic disease impacts in
Asia.

Many studies on temperature fluctuations were associated with
disease worsening; however, a few studies cited improved arthritis
symptoms with warmer weather. A notable gap is that none of the
studies specifically evaluated the impacts of extreme heat or extreme
cold. In addition, outcomes were primarily focused on rheumatic dis-
ease activity (i.e. joint inflammation, serologies). However, given the
high incidence of comorbidities in these patients [292], such as car-
diovascular disease, which is known to increase susceptibility to
extreme heat, the impact of temperature extremes should be further
investigated in rheumatic patients [293].

Malnutrition as a general theme, but not specifically resulting
from climate change, was interrogated in this scoping review. It is
well accepted that climate change is projected to increase malnutri-
tion and food insecurity via extreme weather events, drought,
changes in soil fertility, decreasing crop yields, and decreasing bio-
availability of nutrients in foods [294]. All studies on malnutrition
unanimously reported worsening rheumatic disease measures, which
highlights a health risk for which rheumatologists should be pre-
pared.

4.2. Impacts of climate change factors on infectious diseases with
arthritogenic manifestations

There is a robust body of literature addressing the increasing geo-
graphic footprint and extended seasonality of several infectious dis-
eases due to climate change, especially those that are vector-borne
[11,295]. To better prepare rheumatologists for what to anticipate in
different regions of the world, the focus was on infections with
arthritogenic manifestations that demonstrated evolving geographic
ranges in the context of climate-related exposures. The majority of
studies on arthritogenic infections demonstrated an increase in
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range, less frequently a variable change in range, and with only one
study demonstrating a decrease in range. These infections will pose a
diagnostic challenge for rheumatologists as they try to differentiate a
flare of inflammatory arthritis from infectious arthritis. This is further
complicated by the fact that many patients are treated with immuno-
suppression, rendering them more susceptible to infectious insults.
An additional consideration is that in up to 40 % of patients, the chi-
kungunya virus can cause a chronic arthritis that resembles RA and is
treated with similar disease modifying anti-rheumatic agents such as
methotrexate [296]. Lyme disease, anticipated to expand in geo-
graphic range and seasonality, is a well-known trigger of a post-infec-
tious arthritis which can in some cases become chronic, with synovial
pathology that is similar to RA [297]. Another study found that a his-
tory of dengue infection was significantly associated with SLE [298].
Taken together, these studies raise the concerning possibility that
increases in several infectious diseases driven by climate change may
in fact catalyze the onset or exacerbation of rheumatic diseases.

4.3. Knowledge gaps

There are a myriad of possible mechanisms by which climate
change can impact rheumatic diseases, and the current literature
only begins to dissect these possibilities. For example, there is a sub-
stantial body of literature on the role of stress leading to exacerbation
of rheumatic diseases via cortisol and other inflammatory cytokines
[299]. “Eco-anxiety” is a term that has been recently coined to
describe anxiety related to anticipation of the negative downstream
impacts from climate change [300]. Displacement due to climate
related disasters and food insecurity will certainly lead to increased
anxiety and stress. This study did not specifically interrogate the role
of climate-related stress but substantial negative consequences for
our rheumatic patients could be anticipated.

The direct impacts of climate change (i.e., extreme weather
events) on rheumatic diseases need further exploration. Climate
change will lead to more extreme weather, including temperature
and precipitation shifts and worsened air quality that will make out-
door exercise less feasible. Inactivity will lead to deconditioning and
associated conditions such as obesity, which is known to exacerbate
inflammation in rheumatic diseases [301]. Wildfires threatening air
quality will have disproportionate impacts on patients with ILD,
including ILD patients with SSc, myositis, RA, and Sjogren’s, and may
lead to more disease flares. Climate change can affect water sanita-
tion which could increase enteric infections that drive complications
such as reactive arthritis. A rise in the frequency of infections due to
climate change should be tracked to see if they trigger an initiation or
flare of autoimmune diseases [302].

There was a notable disparity in the numbers of publications from
low-income countries, which are anticipated to be most heavily
affected by climate change. This dearth of publications may be multi-
factorial, perhaps related to limited access to medical literature, lack
of resources (including high publication costs), and competing work
demands.

44. Limitations

There were several limitations of this scoping review. The limita-
tion to papers written in the English language could have introduced
bias. For example, excluding non-English studies may limit the gener-
alizability of findings to populations in non-English-speaking regions,
where the prevalence or impact of autoimmune rheumatic diseases
may differ. In addition, we only searched 2 major databases, did a tar-
geted search of the Journal of Climate Change and Health in Scopus,
performed a limited gray literature search, and excluded reviews,
editorials, and conference abstracts such that some relevant publica-
tions may have been missed. A risk of bias assessment was not per-
formed in this scoping review.
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The identified studies predominantly focus on associations
between indirect climate-related exposures and rheumatic diseases,
with limited exploration of causal relationships or underlying mecha-
nisms. This limitation hinders a deeper understanding of how climate
change directly influences the pathophysiology of rheumatic dis-
eases, thereby constraining the ability to develop effective preventive
and management strategies.

Most studies included in the review primarily address the impact
of indirect climate change exposures on rheumatic diseases in terms
of disease activity or incidence, neglecting other critical aspects such
as treatment responses, disease progression, and patient outcomes.
This narrow focus may overlook potential nuances in the relationship
between climate change and rheumatic diseases, thereby limiting the
comprehensiveness of the findings.

4.5. Future directions

Based on results from this scoping review, it is undeniable that cli-
mate change is currently affecting and will continue to adversely affect
patients with rheumatic diseases. Future studies should aim to eluci-
date the underlying mechanisms through which climate-related fac-
tors influence the pathophysiology of rheumatic diseases. This
requires interdisciplinary collaboration between rheumatologists, cli-
matologists, and other relevant experts to explore the complex inter-
actions between environmental exposures, immune responses, and
genetic predispositions. Additionally, there is a need for longitudinal
studies to assess the long-term effects of climate change on rheumatic
disease outcomes, including disease progression, treatment responses,
and patient quality of life. Longitudinal data collection will provide
valuable insights into the evolving nature of rheumatic diseases in the
context of changing climate patterns, facilitating the development of
targeted interventions and personalized treatment strategies.

Future research should expand beyond the commonly studied
rheumatic diseases such as RA and SLE to include other less well-
characterized conditions such as KD and SSc. This broader focus will
help identify specific vulnerabilities and susceptibilities within
diverse patient populations, enabling more tailored approaches to
prevention, diagnosis, and management.

The accelerating climate emergency is leading to a multitude of
health harms, disproportionately impacting lower income countries
and more vulnerable populations. Moving forward it will be critical
to employ modern mapping data to better define high risk popula-
tions that are vulnerable to specific climate effect risks in order to
devise adaptation strategies to limit harm.

The rheumatology community has only begun to define the mech-
anisms by which climate change is threatening human health and
well-being. To date, only the Australian Rheumatology Society has
issued a position statement on climate change, whereas most other
rheumatology organizations have remained silent on this issue. Med-
ical organizations can be powerful agents of change through advo-
cacy, education, and research. It is incumbent upon rheumatologists
to be aware of the health hazards resulting from climate change and
to consider how these hazards may be impacting our rheumatic
patients. Importantly, we must continue to perform research in these
domains, educate our colleagues and patients on these climate
impacts, and advocate for policies to proactively address the climate
crisis.
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