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1 |  I N TRODUC TION

Approximately 2 million stillbirths, defined by the World 
Health Organization (WHO) as a fetal death after 28 weeks 
gestation but before or during birth, occur every year, with 
the majority of them occurring in Africa and South Asia.1 

Stillbirths have profound negative economic, social and 
psychological impacts on families and communities, and 
remain cloaked in stigma and shame.2,3 Despite progress 
in many other aspects of maternal and infant health, only 
32% of countries have a defined national stillbirth reduc-
tion target.4 Most countries have experienced a reduction 
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Abstract
Exposure to extreme heat in pregnancy increases the risk of stillbirth. Progress in re-
ducing stillbirth rates has stalled, and populations are increasingly exposed to high 
temperatures and climate events that may further undermine health strategies. This 
narrative review summarises the current clinical and epidemiological evidence of the 
impact of maternal heat exposure on stillbirth risk. Out of 20 studies, 19 found an 
association between heat and stillbirth risk. Recent studies based in low-  to middle- 
income countries and tropical settings add to the existing literature to demonstrate 
that all populations are at risk. Additionally, both short- term heat exposure and whole- 
pregnancy heat exposure increase the risk of stillbirth. A definitive threshold of effect 
has not been identified, as most studies define exposure as above the 90th centile of 
the usual temperature for that population. Therefore, the association between heat and 
stillbirth has been found with exposures from as low as >12.64°C up to >46.4°C. The 
pathophysiological pathways by which maternal heat exposure may lead to stillbirth, 
based on human and animal studies, include both placental and embryonic or fetal im-
pacts. Although evidence gaps remain and further research is needed to characterise 
these mechanistic pathways in more detail, preliminary evidence suggests epigenetic 
changes, alteration in imprinted genes, congenital abnormalities, reduction in placen-
tal blood flow, size and function all play a part. Finally, we explore this topic from a 
public health perspective; we discuss and evaluate the current public health guidance 
on minimising the risk of extreme heat in the community. There is limited pregnancy- 
specific guidance within heatwave planning, and no evidence- based interventions 
have been established to prevent poor pregnancy outcomes. We highlight priority re-
search questions to move forward in the field and specifically note the urgent need for 
evidence- based interventions that are sustainable.
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in stillbirth rates since 2000 but the rate of improvement is 
less than other child mortality indicators.5 Worryingly, in 
some countries, the number of stillbirths is increasing as 
birth rates increase faster than stillbirth rates decline,1 with 
women with low socioeconomic status, lack of antenatal 
care, previous stillbirth, increasing maternal age and com-
plicated pregnancies at most risk.1,6

The Intergovernmental Panel on Climate Change Sixth 
Assessment Report (2022) concluded that vulnerability to 
climatic hazards differs by region, and although all regions 
will experience higher temperatures and more frequent tem-
perature extremes, certain regions will be more at risk (tens 
of thousands of additional heat- related deaths are predicted 
by 2100 especially in north, west and central Africa).7

There is growing interest in how climate change may 
affect birth outcomes and maternal health globally.8– 10 
Exposure to high ambient temperature in pregnancy has 
been linked to adverse birth outcomes including congenital 
abnormalities,11 miscarriage,12 preterm birth13– 15 and low 
birth weight16 as well as stillbirth.17,18 These impacts have 
occurred at moderate levels of heat and in populations with 
temperate climates, as well as at higher levels of heat expo-
sure in tropical and sub- tropical regions. Climate change is 
likely to affect birth outcomes also through other weather 
disasters and disruptions in access to health services.

This narrative review summarises the current epidemi-
ological evidence of the association between environmental 
heat exposures and stillbirth, describes the potential mech-
anistic pathways, details existing guidance for pregnant 
women and identifies priority research areas for future work.

2 |  E N V IRONM E N TA L 
TE M PER AT U R E A N D STIL L BIRTH: 
EPIDE M IOLOGICA L EV IDE NCE

Recent systematic reviews include those by Chersich 
et al.19 on heat and adverse pregnancy outcomes (2020) 
and Sexton et al.18 on heat and stillbirth (2021). Both of 
these reviews found good evidence of an increased risk 
of stillbirth at higher temperatures. Only one of 12 stud-
ies included in these reviews was conducted in a low-  to 
middle- income country (LMIC, Ghana).20 A search on the 
Embase database for studies published since the Sexton re-
view identified a further eight studies on the association 
between heat and stillbirth, four of which were based in 
Africa or Asia.21– 24 In total, 19 of 20 studies found an asso-
ciation between heat exposure and stillbirth and one study 
found no association.

The previous reviews demonstrated that the association 
between temperature and stillbirth was most pronounced 
for exposures in the final week or month before birth, sug-
gesting an acute effect of heat exposure. Fewer studies have 
examined the impacts of chronic exposures (i.e., high tem-
peratures throughout the duration of pregnancy). Chersich 
et al.'s meta- analysis found that stillbirths increased 1.24- fold 
(95% CI 1.12– 1.36) with exposure to high temperatures in 

the week leading up to birth, and 3.39- fold (2.33– 4.96) with 
exposure during the third trimester or all of pregnancy.19

Four of only five studies conducted in LMICs have been 
recently published.20– 24 Nyadanu et al.24 explored the impact 
of heat stress (defined by the Universal Thermal Climate 
Index, UTCI) on 5 961 328 births in Ghana from 2012 to 
2020. Exposure to the 90th centile of UTCI versus the me-
dian (30.8°C vs. 28.8°C), for the whole of pregnancy, resulted 
in an 18% (95% CI 2%– 36%) increased risk of stillbirth. 
Exposure to the 99th centile of UTCI (33.2°C vs. 28.8°C) for 
the whole of pregnancy protected against stillbirth, which 
suggests that women in this setting may only adapt their 
behaviours when heat exposure becomes unbearable.24 In 
Iran, an area where temperature variation throughout the 
year is large and summer temperatures can reach as high as 
50°C, two studies explored the impact of heat and stillbirth. 
Khodadadi et al.23 found an increased risk of stillbirth in the 
last 2 weeks of pregnancy in those exposed to the 99th cen-
tile of heat stress (46.4°C) compared with the 75th centile 
(38.0°C), odds ratio (OR) of 2.0 (95% CI 1.0– 4.2). In contrast, 
Ranjbaran et al.'s time- series study from Tehran based on 
data on 3460 stillbirths from 2015 to 2018 found no signif-
icant impact of heat, using a variety of different definitions 
for exposure.22 McElroy et al.21 used a time- stratified case- 
crossover design and Demographic Health Surveillance 
(DHS) data from 14 LMICs and found that stillbirth risk 
increased with exposure to maximum temperatures above 
20°C. However, this study used DHS data where there can be 
uncertainty in the accuracy of exposure assignment (uncer-
tain dates) and outcome (likely to include neonatal deaths).

In Western Australia, risk of stillbirth was found to in-
crease by 19% (95% CI 17%– 21%) when women were exposed 
to moderate heat stress (99th centile UTCI, 31.7°C) versus 
no thermal stress (50th centile UTCI, 13.9°C) throughout 
the last week of pregnancy, and by 41% (95% CI 38%– 44%) 
when exposed to moderate heat stress throughout the last 
2 weeks of pregnancy.25 In Taiwan, Yang et al.26 estimated 
that 2.64% of all stillbirths are attributable to high ambient 
temperature exposures (>29°C). They found that women are 
most susceptible to adverse heat effects in the third trimes-
ter of pregnancy, with a 2.4- fold (95% CI 1.19– 4.8) increased 
risk of stillbirth when exposed to the 99th centile of monthly 
mean temperature (30.1°C) versus the optimal temperature 
(21°C) 0– 3 months before delivery.

Four studies from the USA, all using very large data sets, 
found an increased risk of stillbirth with increasing tem-
perature exposure.27– 30 Kanner et al.27 analysed 112 005 
pregnancy outcomes and found a four- fold increased risk 
of stillbirth for whole pregnancy exposure to temperatures 
>90th centile versus 10– 90th centile (>12.64°C vs. 4.54°C– 
12.64°C), and a 7% (95% CI 4%– 10%) increased risk with 
each 1°C increase during the final week of pregnancy. 
Richards et al.30 looked at the impact of heatwaves (by vari-
ous definitions), across six US states. Like Nyadanu et al.,25 
they found that the risk of stillbirth increased with the in-
tensity and duration of the heat episode. Risk of stillbirth 
increased by 10% (95% CI 4%– 17%) with every 1°C increase 
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in the 7- day average over the heatwave threshold. Two fur-
ther studies from the USA both used a case- crossover study 
design. Here, a person's exposure levels on the days leading 
up to the health event (“case days”) are compared with that 
same person's exposure levels on proximate days (“control 
days”), thereby implicitly controlling for confounding fac-
tors that are time- invariant.31,32 Rammah et al.28 found an 
increased odds of stillbirth (OR 1.45, 95% CI 1.18– 1.77) as-
sociated with a 5.6°C increase in apparent temperature in the 
preceding week, and Savitz and Hu29 found similar odds.

Overall, the new studies add several key points. There are 
now clear data from tropical and temperate regions demon-
strating the impact of heat exposure on stillbirth risk, both 
acutely and chronically. As expected, variation in exposure 
metrics and methodologies prevents easy and clear sum-
mary statistics. However, it is clear from these studies that 
populations exposed to temperatures above the 90th centile 
of the usual temperature for that population are at increased 
risk. This association has been found with exposures from 
as low as >12.64°C up to >46.4°C. From these studies, taken 
together, where large data sets have been used and potential 
confounders controlled for, we find the evidence of the im-
pact of heat on stillbirth to be robust.

Furthermore, some of these studies have explored specific 
characteristics that modify the impact of heat on stillbirth. 
For example, Savitz and Hu29 found that when pregnant 
women were stratified by socio- economic status, the odds 
of stillbirth at high temperatures was over double that in 
the lowest socioeconomic status quartile versus the high-
est. Other risk groups identified in previous studies include 
term stillbirths,25,33 male fetuses,25,34 younger women,25 
non- white women,25,28 and women living in rural areas.21,24 
Understanding these risk factors in more detail will aid in 
the development and implementation of targeted interven-
tions to reduce the impacts of heat on stillbirth risk.

Few studies have considered the differential effects of 
heat exposure on different stillbirth outcomes. Stillbirth is 
a heterogeneous phenotype, and mechanisms are likely to 
differ by cause (e.g. infectious, congenital or placental cause) 
and gestational age. However, there are significant data lim-
itations in determining heat effects. Relatively large data 
sets are needed to detect heat effects, and certainly when 
looking at different causes of stillbirth or effect modifiers. 
Additionally, stillbirths are underreported, particularly in 
low- resource settings. Also, heat exposure may increase the 
risk of early (clinically unobserved) pregnancy loss, which 
may pre- select conceptuses that have some degree of heat 
tolerance, but may result in longer- term health implications 
for the developing child.35

3 |  H E AT STR A I N I N PR EGNA NC Y 
A N D TH E R ISK OF STI L L BIRTH

Humans maintain their core temperature within a narrow 
range of 35.5– 37.5°C, by ensuring that heat loss equals heat 
gain.36,37 Heat gain occurs from both internal (metabolic) 

and external (environmental) sources and heat loss relies on 
both behavioural and physiological mechanisms. Although 
behavioural options are many, the physiological mechanisms 
to lose heat are limited to three— diversion of blood to the 
skin to increase radiative and convective heat loss, sweating 
to enable evaporative heat loss and reduction in metabolic 
rate to limit heat production.37 A steady core temperature 
protects against fetal strain, preterm labour or stillbirth by 
ensuring optimal functioning of the many systems within 
the body, including both intra-  and extra- cellularly. These 
include protein folding (hypothesised to increase the risk of 
congenital abnormalities and early pregnancy loss), catalytic 
enzyme actions, and maintenance of tight junctions between 
cells to preserve blood– brain and intestinal barrier integrity 
(loss of these barriers results in activation of the inflamma-
tory cascade).37

There are multiple physiological changes that occur 
during a human pregnancy that could affect thermoreg-
ulation, visualised in Figure 1. Cardiac output and plasma 
volume increase by up to 50% by the third trimester and al-
though red blood cells increase, there is a dilutional anae-
mia.38 The increase in basal metabolic rate and decrease in 
body mass to surface area ratio is balanced by lowering of the 
sweat threshold and a steady decrease in core temperature as 
pregnancy progresses.39

There remains equipoise as to whether these physiolog-
ical changes impair thermoregulation, but recent studies 
have demonstrated that, in humans, maintaining thermal 
homeostasis is no more challenging in pregnancy than when 
not pregnant.39– 41 However, as discussed below there are 

F I G U R E  1  Representation of the physiological alterations in 
pregnancy that influence thermoregulation. Specific heat capacity refers 
to the amount of heat required to increase the temperature of 1 unit of 
mass by 1° Kelvin— therefore a higher specific heat capacity means more 
heat is needed to increase the temperature of a given mass.
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several potential pathways implicated in the association be-
tween heat exposure and stillbirth, with maternal heat strain 
only being one of them.

4 |  H Y POTH E SISED P ATH  OP H  Y SI  
OLO  GICA L M ECH A N ISMS

It is estimated that over 40% of stillbirths globally are 
preventable with improved antenatal and intrapartum 
care.1 Some of the known risk factors for stillbirth in-
clude: hypertension, diabetes, infections in the mother, 
and also fetal growth restriction and maternal undernu-
trition. Environmental factors known to cause stillbirth 
include household and outdoor air pollution and a range 
of chemical hazards.42 However, no clear cause is found 
in approximately 30% of cases.43 In this section we de-
scribe the key pathophysiological mechanisms proposed 
in the literature for the impact of heat on pregnancy, with 
a focus on those pathways relevant to stillbirth. These 
pathways include:

• congenital malformation44

• maternal heat strain36,45

• dehydration46

• reduction in placental blood flow47,48

• placental growth restriction49

• placental insufficiency50

• oxytocin and prostaglandin release.51

Most of these mechanisms although plausible from a the-
oretical and animal physiological understanding, remain 
hypothetical as detailed studies in humans are lacking.39 It 
is important to note that although pathophysiological mech-
anisms of adverse pregnancy outcomes may overlap, it is 
likely that there are additional pathways to consider for each 
outcome. For example, details from experimental animal 
studies show that acute heat stress can reduce blood flow to 
the placenta by up to 30% (potentially a trigger for preterm 
labour or stillbirth), and when exposed to prolonged heat 
stress in late gestation, can decrease placental size and im-
pair nutrient and oxygen transport in mammals (a poten-
tial mechanism for low birthweight or stillbirth).52,53 Other 
data in experimental mammals reveal that cyclic heat stress 
during early gestation perturbs the expression of genes and 
proteins controlling nutrient transport and metabolic pro-
cesses, including glucose and peptide transporters in the 
placenta.54 Therefore, heat stress may reduce blood flow to 
the placenta, impair placental function and trigger small for 
gestational age, fetal growth restriction and/or preterm birth 
or stillbirth.

The upregulation of heat- shock proteins is also po-
tentially implicated in the effects of heat stress/strain on 
pregnancy outcomes.55 Heat- shock proteins, also known 
as molecular chaperones, are a broad group of inducible 
proteins, produced by cells as a response to any potentially 
damaging stimuli, and not specific to heat stress, e.g., they 

can be triggered by ischaemic or oxidative stress and often 
act as intercellular stabilisers.56 Of note, they protect cel-
lular protein synthesis machinery and avoid apoptosis and 
necrosis induced by stress stimuli. In heat acclimation, 
heat- shock protein levels increase in keeping with the phe-
notypical changes that are also induced (lowered core body 
temperature, cardiovascular stability, lowered sweating 
threshold and improved heat loss).57,58 In pregnancy, there 
is no clear consensus on the role of heat- shock proteins,59 
although there is some evidence that they are in placentas 
from pregnancies with adverse pregnancy outcomes, such as 
small for gestational age60,61 and possibly, preterm birth.61– 63 
There are also changes in the abundance of cells positive for 
heat- shock proteins within the maternal decidua in cases 
of spontaneous pregnancy loss.63 Heat and heat- shock pro-
teins may promote proinflammatory cytokine release and 
tissue inflammation,64– 66 which are key triggers for partu-
rition, and so may have implications for premature delivery 
in the context of heat and pregnancy.67– 69 Indeed, there are 
data suggesting that exposure to elevated temperatures in 
warm seasons near or at term, increases the risk of placental 
abruption.70

Recent work using transcriptomic analysis of the placenta 
has identified further pathways, including aberrant expres-
sion of genes and pathways implicated in nutrient sensing, 
protein synthesis and folding, mitochondrial function, 
and nutrient and vascular transport, which probably con-
tribute to fetal outcomes in women exposed to heat stress 
during pregnancy.71 These placental changes are consistent 
with molecular studies of the placenta in unexplained fetal 
growth restriction and pre- eclampsia (both risk factors for 
stillbirth).72,73

There is also a proposed role for epigenetic changes as 
being mediators of the effect of maternal heat strain on 
pregnancy outcomes. This is mostly extrapolated from ex-
perimental animal studies. The epigenome describes mod-
ifications to the DNA and DNA- associated proteins, which 
impact gene expression— genes may be switched on and 
off in different cell types and at different times.74 Defective 
epigenetic changes can result in severe health implications, 
such as increased risk of type II diabetes, cardiovascular 
disease and metabolic disorders.75– 77 Evidence from mam-
malian studies indicates that epigenetic modifications are 
sensitive to heat exposure and potentially disrupt imprinted 
gene expression78 and metabolic proteins,79 and reduce an-
tioxidant defence capacity among other effects.80,81 In chick 
embryos exposed to heat stress, there are also changes in the 
activation of the heat- shock protein HSP70, which serves to 
stabilise the intracellular environment with potential im-
plications for long- term heat vulnerability and resilience.82 
However, human data are still lacking and it is likely that 
the pathophysiological pathways are complex and inter-
connected (see Figure 2 for a simplified visualisation of hy-
pothesised pathways). Moreover, the implications of these 
potential pathophysiological pathways for understanding 
impacts of heat stress and strain on human populations, re-
main unclear.
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5 |  CU R R E N T GU IDA NCE : 
R EDUCI NG TH E H E AT R ISK 
I N PR EGNA NC Y

It is important that pregnant women understand the risks of 
exposure to high temperatures. There are several strategies 
for reducing the impacts of heat, including both health edu-
cation and increasing access to cooling spaces. Although, to 
our knowledge, there is no specific guidance on reducing the 
impact of heat on stillbirth risk, broader measures to reduce 
the heat health risk in pregnancy are discussed here because 
they are potentially effective for all heat- related adverse birth 
outcomes.

Some guidance is targeted towards vulnerable popula-
tions identified as those who are at increased risk from heat, 
and with specific actions depending on those at risk, often 
targeted to healthcare workers or carers. UNICEF published 
Protecting children from heat stress report in May 2023, 
which includes some guidance on prevention and treat-
ment of heat stress in pregnancy as well as in infants and 
children.83 National agencies such as the CDC and UKHSA 
also provide specific advice for heat health protection. The 
WHO/World Meteorological Organisation recognise that 

local and national heat health action plans are important 
to prevent heat- related illness and mortality. Such plans in-
clude preparedness measures as well as just actions linked to 
heat alerts. Due to the increased concern about heat, there 
has been an increased focus on the built environment and 
how to reduce heat exposures through planning and housing 
design.

There also needs to be an increased awareness of heat risks 
among clinicians and healthcare workers. The International 
Federation of Gynecology and Obstetrics released a posi-
tion statement committing to incorporating climate change 
into its Education, Advocacy and Research Programs going 
forward.84

Public health action to reduce the health impacts of heat 
(visualised in Figure 3) can be broadly considered as (1) pub-
lic health messaging and awareness/individual behaviour 
change, (2) community- level interventions and (3) healthcare 
provider interventions.85 Heat health warning systems have 
been shown to be effective in high- income countries,86 and 
ongoing work shows promising evidence from LMICs.87,88 
However of note, this evidence relates to evaluation of im-
pact on the rate of mortality in the general population and 
to date there have been no evaluations of the impact of these 

F I G U R E  2  Hypothesised pathophysiological pathways of the impact of heat on the placenta and the fetus. Abbreviations: ER, endoplasmic 
reticulum; HSP, heat- shock proteins.
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action plans for heat- related morbidity or pregnancy- related 
complications.

Key take- home messages for healthcare workers caring 
for pregnant women are that there remains poor awareness 
of the health risks of heat among healthcare profession-
als, pregnant people and their families. This should be ad-
dressed as a priority in the light of increasing exposure to 
heat. Special consideration, such as specific targeted advice 
or referral to high- risk clinics, for at- risk pregnant women 
should include those with chronic health conditions, high 
levels of exposure (occupational exposures, high indoor tem-
peratures) and socio- economic constraints that limit heat 
avoidance activities (e.g. access to cooling from fans or air 
conditioning units, manual workers etc.).

6 |  K EY GA PS A N D PR IOR IT Y 
A R E AS FOR ONGOI NG WOR K W ITH 
A CL E A R CLI N ICA L N E ED

There is good evidence that high ambient temperatures are 
harmful to pregnancy, but the magnitude of these effects 
remains largely unknown. This is now a priority for mater-
nal health communities, and several new projects to explore 

these biological mechanisms have been funded in this area 
in 2023 by the Wellcome Trust.89

For clinicians, strategies to slow global warming (miti-
gation), beyond individual actions and advocacy efforts, are 
beyond the scope of the typical healthcare worker roles, al-
though involvement in action to reduce harmful greenhouse 
gas emissions associated with the healthcare system should 
be encouraged. Healthcare workers should, however, support 
and identify effective adaptation strategies for their patients, 
working with women and communities to minimise the ef-
fects of prolonged heat exposure on pregnancies. Clinical re-
search needs to better recognise who is vulnerable, discover 
what gestational age window is at particular risk, and assess 
the clinical and cost- effectiveness of adaptation strategies 
(see Table 1 for expanded research priorities).

Central to these efforts must be a focus on equity, with 
the research led by and carried out in communities and 
countries most at risk of extreme heat exposure. The paucity 
of high- quality data from LMICs has been highlighted from 
this review. There are several large, well- dated and complete 
pregnancy cohorts that have been established over the past 
15 years in LMICs and there is an opportunity to leverage 
these cohorts to answer ecological exposures such as heat, 
with many of these cohorts also having large biorepositories 

F I G U R E  3  Visualisation of short- term action to reduce the adverse effects of heat on the general population (not pregnancy specific).
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   | 629EXPERT REVIEW OF MATERNAL HEAT EXPOSURE AND STILLBIRTH

to test hypotheses as they emerge from the ongoing work in 
this space.

7 |  CONCLUSION

Ultimately, action to limit global warming remains the 
number one priority to reduce exposure to extreme heat and 
other climate hazards and so limit the health impacts of cli-
mate change. Second, universal access to sustainable cooling 
is essential going forward. Finally, long- term adaptation ef-
forts to reduce the impact of heat on stillbirth must consider 
the global, regional and local spatial inequality in exposure 
and the complex interplay of social and economic factors 
that are often missing in terms not only of identifying those 
most at risk, but also in developing effective interventions.
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