

Understanding and Managing Urban Heat

Masterclass 5.1

Part 2: Framework for Understanding and Addressing Urban Heat

Ariane Middel (Arizona State University) Jennifer Vanos (Arizona State University)

OBJECTIVES

To understand the various metrics used to quantify heat, exposure, and outdoor thermal comfort

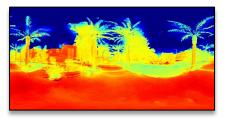
To understand the basics elements and nature of outdoor thermal comfort

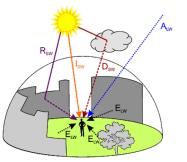
To understand how climate-sensitive design can improve outdoor thermal comfort and heat exposure

FUNDAMENTALS: Heat Metrics

Heat comes in many forms

- Air temperature (T_a)
 - Measure of how hot or cold the air is


Surface temperature (T_s)


Temperature of a surface

Mean Radiant temperature (T_{MRT})

• Synthetic parameter that summarizes the heat load on a person's body

FUNDAMENTALS: Heat Sensors

Examples of Heat Sensors

Air temperature (T_a)

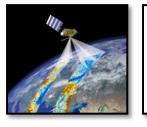
•

•

•


· Weather station, handheld thermometers

Surface temperature (T_s)


Satellites, thermal cameras, IR guns

Mean Radiant temperature (T_{MRT})

Globe thermometer,6-directional setup (3 net radiometers)

FUNDAMENTALS: Heat Metric Applications

When to use which metric?

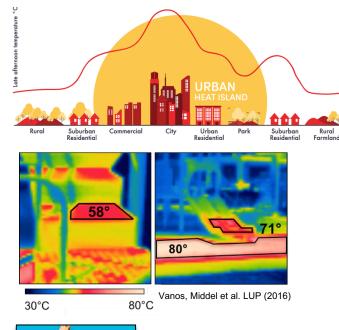
Air temperature (T_a)

•

•

•

•

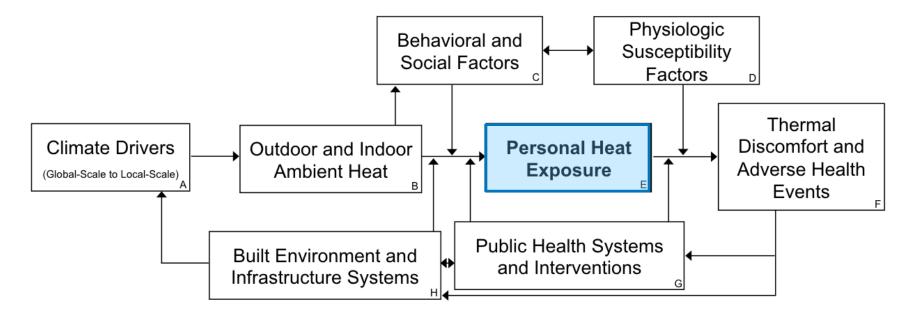

Building energy use, UHI

Surface temperature (T_s)

Surface UHI, touch-scale studies

Mean Radiant temperature (T_{MRT})

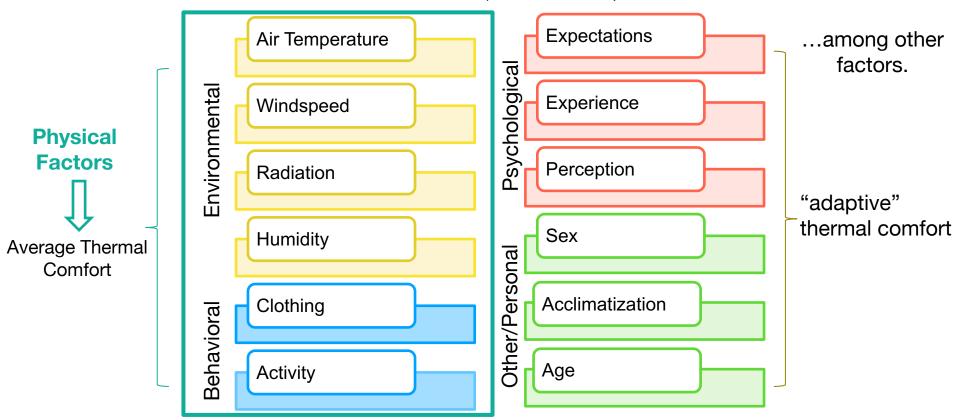
Human thermal comfort and exposure



Interactive Mentimeter Question:

What other factors besides air temperature and mean radiant temperature do you think impact thermal comfort?

How do people experience heat? Personal Heat exposure (PHE)

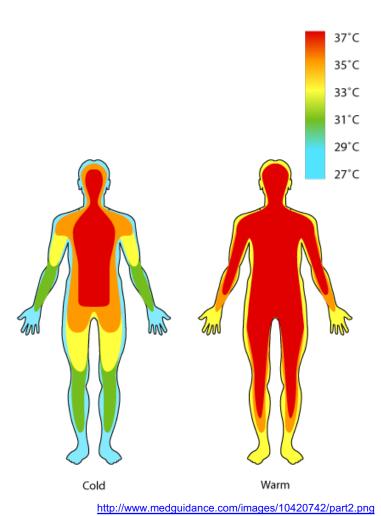

PHE "realized contact between a human and an indoor or outdoor environment in which the air temperature, radiative load, atmospheric moisture content, and air velocity collectively pose a risk of increases in body **core temperature** and/or **perceived discomfort**" (Kuras et al., 2018)

Kuras ER, Bernhard MC, Calkins MM, Ebi KL, Middel, AM., Vanos JK, Hondula DM, et al. Environ Health Perspectives (2018).

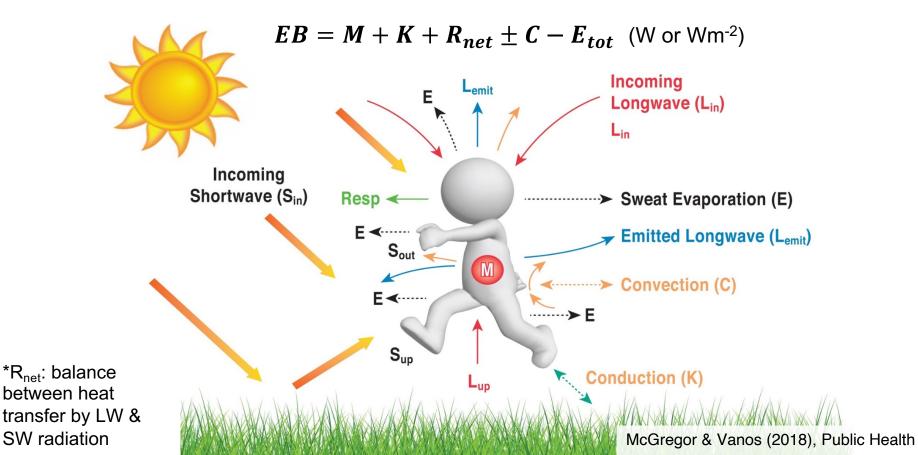
FUNDAMENTALS: Outdoor Thermal Comfort

Thermal comfort is "the condition of mind that expresses satisfaction with the thermal environment" (ASHRAE, 1966)

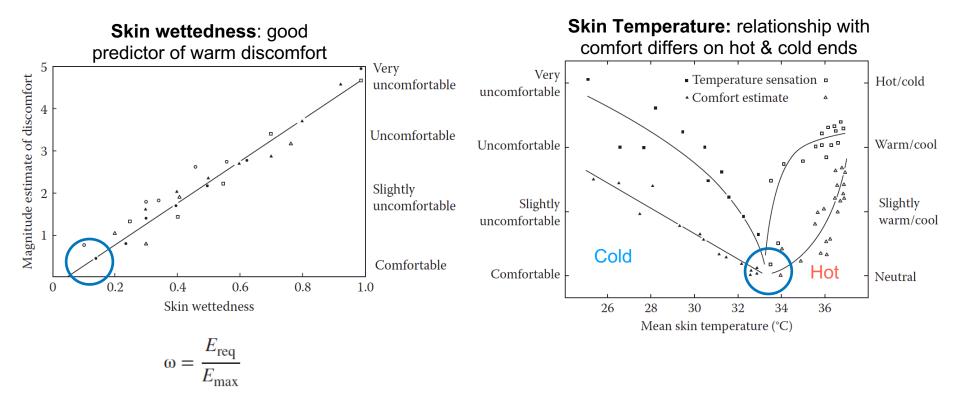
The Thermal Comfort Equation


Three main conditions for comfort

(Fanger, 1970):


- 1. The body is in heat balance.
- 2. Sweat rate is within comfort limits.
- 3. Mean skin temperature is within comfort limits.

(4th also the absence of local discomfort)


Fanger, P. O., 1970, *Thermal Comfort*, Copenhagen: Danish Technical Press.

Outdoor Heat Exchange & factors used to predict thermal comfort

Comfort Limits of Sweat & Skin Temperature

In Parsons (2014) adapted from Gonzalez, R.R. and Gagge, A.P., ASHRAE Transactions, 79, 89–96, 1973.

Thermal Comfort & Thermal Sensation

Thermal Comfort: Lack of discomfort (in steady state) **Thermal Sensation:** For deviations from comfort in transient conditions; function of thermal load and activity (Parsons, 2014)

Deviations from comfort Very Uncomfortable Uncomfortable Slightly Uncomfortable Comfortable Deviations from comfort

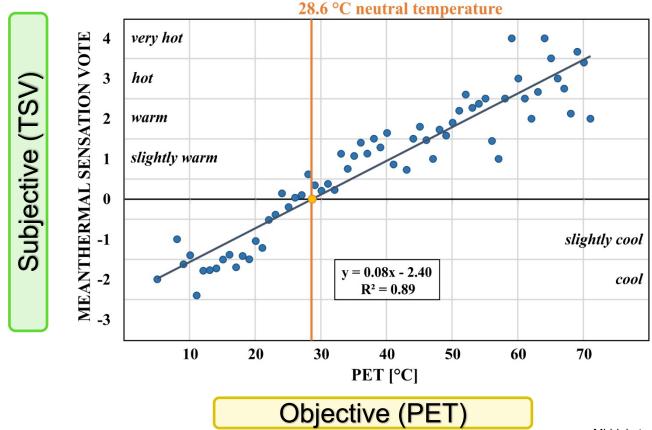
Thermal Sensation Scale

Hot	+3
Warm	+2
Slightly warm	+1
Neutral	0
Slightly cool	-1
Cool	-2
Cold	-3

Subjective:

Called "Thermal Sensation Vote" (TSV), "Actual Thermal Sensation" (ATS) or perception

Thermal Sensation


(outdoor, low/no activity)

Objective:

Output from a model (e.g., PET, UTCI, PMV, COMFA, etc.)

Thermal Sensation Scale (9-point scale)	PET (°C)	UTCI (°C)	PMV	COMFA (W m ⁻²)
-4 (very cold)	<4	< -40	< -3.5	
-3 (cold)	4–8	-40 to -27	-3.5 to -2.5	≤ −201
-2 (cool)	8–13	−27 to −13	-2.5 to -1.5	-200 to -121
-1 (slightly cool)	13–18	0 to 9	-1.5 to -0.5	-51 to -120
0 (neutral)	18–23	9 to 26	-0.5 to 0.5	-50 to 50
+1 (slightly warm)	23–29	26 to 32	0.5 to 1.5	51 to +120
+2 (warm)	29–35	32 to 38	1.5 to 2.5	+121 to +200
+3 (hot)	35–41	38 to 46	2.5 to 3.5	≥201
+4 (very hot)	>41	>46	>3.5	

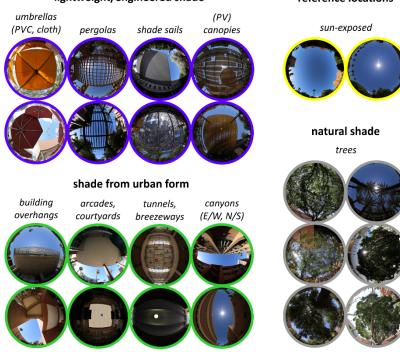
Subjective versus Objective

Middel et al. (2016). Int J Biomet. 60:1849–1861

Heat Mitigation Strategies

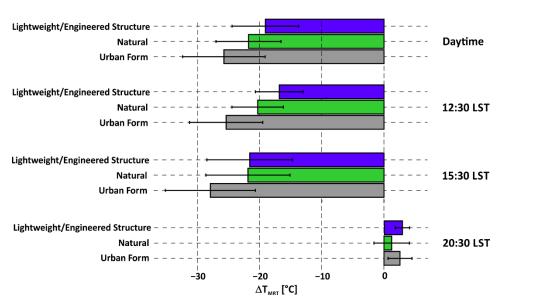
HEAT MITIGATION

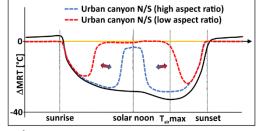
- Urban Greening
- Urban Materials
- Urban Form



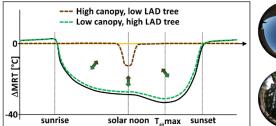
Case Study 1: Shade

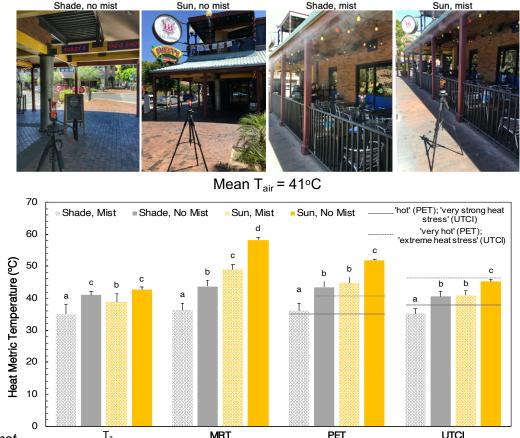
What is the most effective shade type depending on urban context and function of space?


- Cities face challenges to meet tree canopy goals outlined in urban forestry plans
- Goal: develop guidelines and best practices —grounded in local observational data— that can be incorporated into ordinances and plans



Case Study 1: Shade


What is the most effective shade type depending on urban context and function of space?


COURTYARDS

Case Study 2: Misters for Evaporative Cooling in a Hot, Dry Climate

- Misters improved thermal comfort across all days, sites, and exposure conditions.
- Thermal comfort was most improved using mist + shade — PET and UTCI were reduced by 15.5°C and 9.7°C (p<0.05)
- Business managers identified customer comfort and increased seating capacity as the principal factors for mister use.

factors for mister use.

Case Study 3: Tokyo Spectators' Thermal Comfort

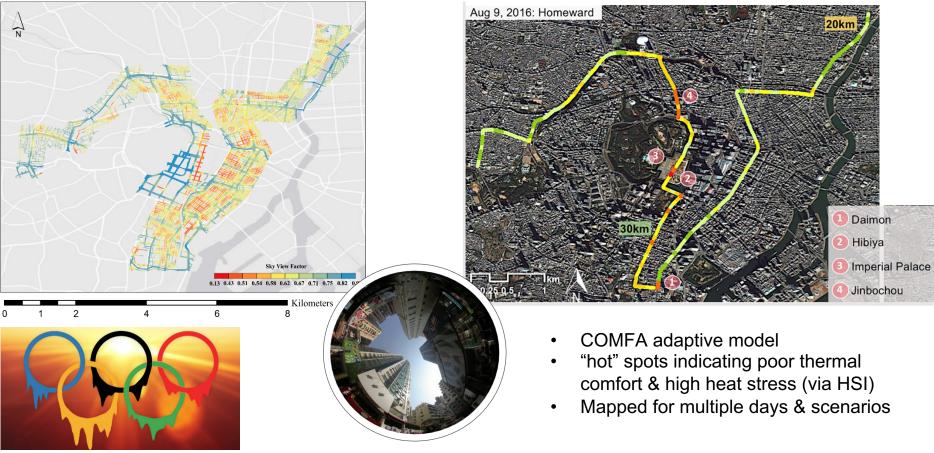
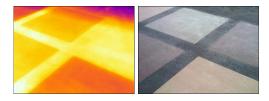



Photo Illustration by Sarah Rogers/The Daily Beast

Vanos, JK., Kosaka, E., lida, A., Yokohari, M., Middel, A. et al. (2018) Science of the Total Environment. 657, 904-917.

Case Study 4: Cool Pavement

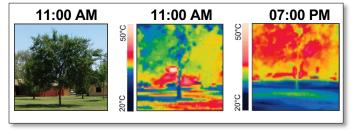
What is the impact of cool (highly reflective) pavement on urban heat?

Holistic assessment of "Cool Seal" in City of Phoenix residential neighborhoods

Phoenix neighborhood, half-coated with CoolSeal September 10, 2020, 13:08 h Air temperature: 32°C Difference in surface temperature: 7.5°C

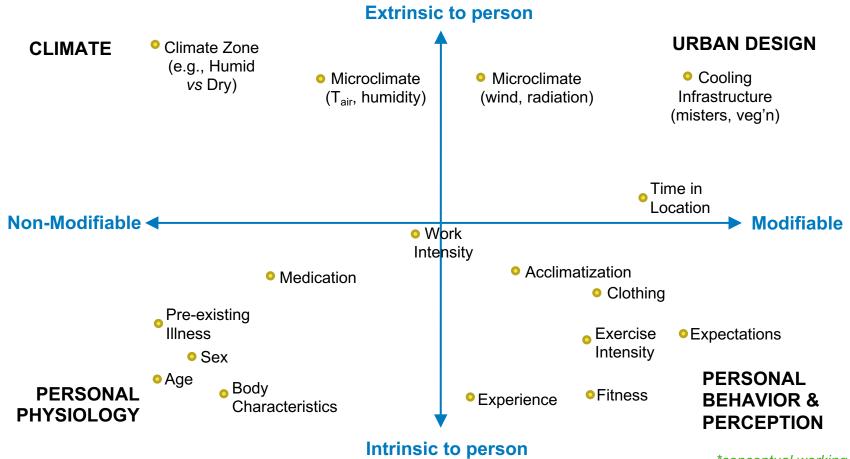
ASU: Schneider, Vanos, Middel, Sailor, Hondula, Kaloush, Campbell, Medina, Cordova City of Phoenix: Lolly

Interactive Mentimeter Question


What percent of downtown city land, on average, is used for vehicles in the United States? (parking lots, roads, etc.)

Competing Goals and Tradeoffs

No one-size-fits-all heat mitigation strategy


- Vegetation cools through shade and evapotranspiration but requires irrigation in hot dry environments
- Shade increases daytime thermal comfort, but longwave trapping/heat retention at night
- High albedo surfaces lower surface temperature but increase mean radiant temperature

Goals & Considerations for Outdoor Thermal Comfort

*conceptual working diagram

Wrap Up & Conclusions

Urban infrastructure can **increase heat** (as discussed in Part I on UHIs) and **mitigate heat** (via vegetation, urban form, materials)

- Sensors and models can help us quantify impacts
- Type of metric is an important consideration

Thermal comfort is complex and highly individualized

· Important to understand the model used

No one size fits all for designing thermally comfortable spaces

spaces should be responsive to the needs of their users and climate-specific

Thank you!

COORDINATION TEAM

Joy Shumake-Guillemot

WHO/WMO Joint Office for Climate and Health

jshumake-guillemot@wmo.int

Juli Trtanj

NOAA Climate Program Office

juli.trtanj@noaa.gov

Hunter Jones

NOAA Climate Program Office hunter.jones@noaa.gov

#HEATHEALTH www.ghhin.org