Heat Index: Possible HAP Action Threshold?

Kim Knowlton, Natural Resources Defense Council SAHHS, Pune, India | 14 February 2020

Since 2009: Working with Partners on Heat-Health in India

Thresholds: their role in HAPs

Different locations use different metrics

Reaching the threshold value triggers response actions to avoid health harms from heat stress

In the absence of health data, often assume 95th to 99th percentile index values are associated with a health response, and use those values for action thresholds

Country	Threshold	Thresholds based on historical mortality	Excess mortality forecast	Duration of heat event included	Seasonality or adaptation included	Regionally variable thresholds	Human expertise
Australia (Queensland)	AT			2 days		~	~
Belarus	Т						
Belgium	Tmax/Tmin/Ozone			3 days			
Canada (Toronto region)	Airmass	~	~	~	~	~	~
Canada (Montreal)	Tmax/Tmin			✓			
Canada (all others)	Humidex			✓			
China (Hong Kong)	NET						
China (Shanghai)	Airmass	~	~	~	~		~
France	Tmax/Tmin	~		3 days		~	~
Germany	PT			2 days	~	~	✓
Greece	Tmax			✓			
Hungary (Budapest only)	Tmean	×					
Italy	Airmass/Tapp	~	~	✓	~	~	
Republic of Korea	Airmass	~	~	~	~	~	~
Republic of Korea (Seoul*)	Airmass	~	~		~	~	-
Latvia	Tmax			✓			
Netherlands	Tmax			✓			
Poland	Tmax/Tmin						
Portugal	Tmax	✓	✓	✓		✓	✓
Romania	ITU						
Slovenia	Forecaster						~
Spain	Tmax/Tmin	~				~	✓
Switzerland	HI						
United Kingdom (England and Wales)	Tmax/Tmin			~		~	
USA (synoptic**)	Airmass	~	~	~	~	~	~
USA (all others)	HI			2 days		✓	~
	ature ht temperature im temperature	HI PT ET		Heat Index perceived tem equivalent ter		4	

īτu

temperature AT or Tapp

Tmin

Tmean

apparent temperature maximum temperature minimum temperature mean temperature

equivalent temperature Temperature Humidity Index

Heat Index: What It Does, How It's Developed

- •Heat Index (HI) combines air Temperature (T) and Relative Humidity (RH), measures how hot it actually feels: *When RH is high, evaporation rate of perspiration slows, body cools less efficiently & people retain heat
- •HI most effective for temperatures >26°C and RH≥ 40%
 *HI values designed for shady, light wind conditions;
 *Full sunshine can increase HI values by up to 8°C;
 *Strong winds, esp. with hot, dry air, are very hazardous

Heat Index Calculation in degrees Celsius

HI = -8.78469475556 + 1.61139411(T) +

2.33854883889(RH) + -0.14611605(T*RH) +

-0.012308094(T*T) + -0.0164248277778(RH*RH) +

0.002211732(T*T*RH) + 0.00072546(T*RH*RH) +

-0.000003582(T*T*RH*RH)

where

HI = heat index (in degrees Celsius)

T = ambient dry-bulb temperature (in degrees Celsius)

RH = relative humidity (percentage value between 0 and 100)

Source: US National Weather Service, Weather Prediction Center

Relative	Temperature °C																
Humidity	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43
%																	
40	27	28	29	30	31	32	34	35	37	39	41	43	46	48	51	54	57
45	27	28	29	30	32	33	35	37	39	41	43	46	49	51	54	57	
50	27	28	30	31	33	35	36	38	41	43	46	49	52	55	58		
55	28	29	30	32	34	36	38	40	43	46	48	52	54	58			
60	28	29	31	33	35	37	40	42	45	48	51	55	59				
65	28	30	32	34	36	39	41	44	48	51	55	59					
70	29	31	33	35	38	40	43	47	50	54	58						
75	29	31	34	36	39	42	46	49	53	58							
80	30	32	35	38	41	44	48	52	57								
85	30	33	36	39	43	47	51	55									
90	31	34	37	41	45	49	54										
95	31	35	38	42	47	51	57										
100	32	36	40	44	49	56											
Cau	Caution Extreme Caution							Danger Extreme Danger							ger		

Table 1: Temperature/ Humidity Index

Source: Calculated °F to °C from NOAA's National Weather Service

Source: NDMA Heat Guidelines (2016)

Heat Index Chart – degrees Celsius and F

Tempera- ture Relative humidity	80 °F (27 °C)	82 °F (28 °C)	84 °F (29 °C)	86 °F (30 °C)	88 °F (31 °C)	90 °F (32 °C)	92 °F (33 °C)	94 °F (34 °C)	96 °F (36 °C)	98 °F (37 °C)	100 °F (38 °C)	102 °F (39 °C)	104 °F (40 °C)	106 °F (41 °C)	108 °F (42 °C)	110 °F (43 °C)
40%	80 °F (27 °C)	81 °F (27 °C)	83 °F (28 °C)	85 °F (29 °C)	88 °F (31 °C)	91 °F (33 °C)	94 °F (34 °C)	97 °F (36 °C)	101 °F (38 °C)	105 °F (41 °C)	109 °F (43 °C)	114 °F (46 °C)	119 °F (48 °C)	124 °F (51 °C)	130 °F (54 °C)	136 °F (58 °C)
45%	80 °F (27 °C)	82 °F (28 °C)	84 °F (29 °C)	87 °F (31 °C)	89 °F (32 °C)	93 °F (34 °C)	96 °F (36 °C)	100 °F (38 °C)	104 °F (40 °C)	109 °F (43 °C)	114 °F (46 °C)	119 °F (48 °C)	124 °F (51 °C)	130 °F (54 °C)	137 °F (58 °C)	
50%	81 °F (27 °C)	83 °F (28 °C)	85 °F (29 °C)	88 °F (31 °C)	91 °F (33 °C)	95 °F (35 °C)	99 °F (37 °C)	103 °F (39 °C)	108 °F (42 °C)	113 °F (45 °C)	118 °F (48 °C)	124 °F (51 °C)	131 °F (55 °C)	137 °F (58 °C)		
55%	81 °F (27 °C)	84 °F (29 °C)	86 °F (30 °C)	89 °F (32 °C)	93 °F (34 °C)	97 °F (36 °C)	101 °F (38 °C)	106 °F (41 °C)	112 °F (44 °C)	117 °F (47 °C)	124 °F (51 °C)	130 °F (54 °C)	137 °F (58 °C)			
60%	82 °F (28 °C)	84 °F (29 °C)	88 °F (31 °C)	91 °F (33 °C)	95 °F (35 °C)	100 °F (38 °C)	105 °F (41 °C)	110 °F (43 °C)	116 °F (47 °C)	123 °F (51 °C)	129 °F (54 °C)	137 °F (58 °C)				
65%	82 °F (28 °C)	85 °F (29 °C)	89 °F (32 °C)	93 °F (34 °C)	98 °F (37 °C)	103 °F (39 °C)	108 °F (42 °C)	114 °F (46 °C)	121 °F (49 °C)	128 °F (53 °C)	136 °F (58 °C)					
70%	83 °F (28 °C)	86 °F (30 °C)	90 °F (32 °C)	95 °F (35 °C)	100 °F (38 °C)	105 °F (41 °C)	112 °F (44 °C)	119 °F (48 °C)	126 °F (52 °C)	134 °F (57 °C)						
75%	84 °F (29 °C)	88 °F (31 °C)	92 °F (33 °C)	97 °F (36 °C)	103 °F (39 °C)	109 °F (43 °C)	116 °F (47 °C)	124 °F (51 °C)	132 °F (56 °C)			I				
80%	84 °F (29 °C)	89 °F (32 °C)	94 °F (34 °C)	100 °F (38 °C)	106 °F (41 °C)	113 °F (45 °C)	121 °F (49 °C)	129 °F (54 °C)								
85%	85 °F (29 °C)	90 °F (32 °C)	96 °F (36 °C)	102 °F (39 °C)	110 °F (43 °C)	117 °F (47 °C)	126 °F (52 °C)	135 °F (57 °C)								
90%	86 °F (30 °C)	91 °F (33 °C)	98 °F (37 °C)	105 °F (41 °C)	113 °F (45 °C)	122 °F (50 °C)	131 °F (55 °C)									
95%	86 °F (30 °C)	93 °F (34 °C)	100 °F (38 °C)	108 °F (42 °C)	117 °F (47 °C)	127 °F (53 °C)			1							
100%	87 °F (31 °C)	95 °F (35 °C)	103 °F (39 °C)	112 °F (44 °C)	121 °F (49 °C)	132 °F (56 °C)										
	Ke	ey to col	lors:	Ca	ution	E	xtreme	caution		Danger		Extrer	ne dang	er		

NOAA national weather service: heat index

For example, if the air temperature is 96 °F (36 °C) and the relative humidity is 65%, the heat index is 121 °F / 49 °C.

Is a Heat Index Appropriate as a HAP Threshold?

Do cities have access to Past, Present, & Future local maximum Heat Index data, to calculate a possible Heat Index threshold value?
 Does IMD already provide Heat Index information for cities, in a user-friendly format?
 What if coastal cities applied IMD's Heat Wave definition, i.e. Heat Wave declared on days ≥ 40°C
 What would it take to develop a NEW Heat Index for India? Is it needed?

What could be an effective user format? ("dashboard")

How can both the meteorological data producer community and the user community be engaged, to develop effective approaches to setting humidity-inclusive HAP thresholds?

Suggestions & Options

Determine what regions & which cities have been asking for a Heat Index approach

Evaluate heat-health evidence regarding which cities experience harmful effects of humidity, in addition to heat

Do cities in India have access to past & present data needed to calculate the maximum daily Heat Index threshold? Or future forecasts of maximum daily Heat Index?

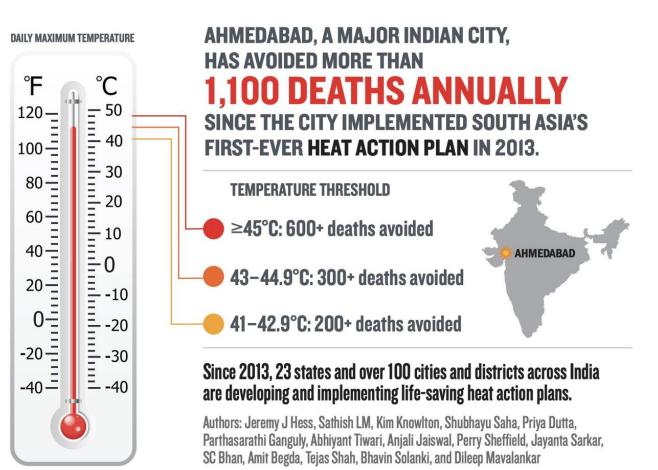
Is a Heat Index that's unique to India needed?

Engage the meteorology information producers *and* users to develop temperature + humidity output formats

Heat Index - - Next Steps

Provide a forum for discussion of:

- Whether temperature-humidity metrics like HI could be more health-protective HAP thresholds in more humid Indian cities
- Whether existing Heat Index data (archived and forecasted) is already available to cities for use as municipal HAP thresholds
- What form might an effective presentation of Heat Index data take, to be useful to cities in HAP threshold-setting
- Whether a Heat Index calculation unique to India is needed


Do Heat Action Plans make a difference?

Is heat vulnerability reduced after launching a HAP?

We evaluated summer deaths <u>before</u> & <u>after</u> the 2013 HAP launch.

We found that:

- Adaptations to reduce people's vulnerability to extreme heat save lives.
- Mortality rates on days >40°C (104°F) show 5% decrease post-HAP (2014-2015), relative to pre-HAP (2007-2010).
- Mortality rates on hottest days >45°C (113°F) showed a 27% decrease post-HAP.

Hess JJ, et al. 2018. Building resilience to climate change: pilot evaluation of the impact of India's first Heat Activation Plan on all-cause mortality. Journal of Environmental and Public Health, vol. 2018, Article ID 7973519 (8 pp.). https://doi.org/10.1155/2018/7975519.

Background on Heat Index

- Bessemoulin P, Ebi K, Menne B (eds.). "Heatwaves and Health: Guidance on Warning-System Development" (2015). WMO-No. 1142, World Meteorological Organization and World Health Organization.
- Vaidyanathan A, et al. "A Statistical Framework to Evaluate Extreme Weather Definitions from a Health Perspective: A Demonstration Based on Extreme Heat Events." BAMS (October 2016), 1870-1830.
- Tustin AW, et al. (2018). "Evaluation of Occupational Exposure Limits for Heat Stress in Outdoor Workers." MMWR Weekly Report 67(26) (July 6, 2018).
- National Disaster Management Authority (NDMA). "Guidelines for Preparation of Action Plan - Prevention and Management of Heat-Wave, 2016." NDMA-GOI.
- Metzger KB, Ito K, Matte TD. "Summer Heat and Mortality in New York City: How Hot Is Too Hot?" Environ Health Perspect 118:80-86 (2010).

Heat Index Calculation

NWS Weather Prediction Center, "The Heat Index Equation":

https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml

NWS on "Heat Index Forecasts":

https://www.weather.gov/bgm/heatindexforecasts

Thank you kknowlton@nrdc.org