Urban Heat Interventions & Evaluation:

A Los Angeles Case Study on Improving Heat-Health Outcomes Using Land Cover Prescriptions

Masterclass 5.3

Edith de Guzman
Los Angeles Urban Cooling Collaborative / University of California, Los Angeles

March 2, 2021
LOS ANGELES, CA, USA

- 10 million residents
- Mediterranean climate
 - 121°F/50°C on Sept. 6, 2020
- Varied topography and ecosystems
 - Sea level to 10,000 ft/3,000m
 - Coastal sage scrub, chaparral, oak woodland, montane woodland, grasslands, desert, riparian, and wetlands
LOS ANGELES, CA, USA

BOYLE HEIGHTS

BRENTWOOD

Video credit: Coalition to Preserve LA
MENTIMETER QUESTION #1

THINK ABOUT YOUR CITY OR TOWN.

Why do some neighborhoods have more tree cover than others?
MULTI-DISCIPLINARY AND INTER-SECTORAL PARTNERSHIP TO BRIDGE SCIENCE TO PRACTICE

Academia | Non-Governmental Organizations | Government | Private Industry
Public health, bioclimatology, forestry, policy, climate science, environmental psychology, anthropology

Dr. Yujuan Chen
TreePeople

Edith de Guzman
UCLA / TreePeople

Dr. David Eisenman
UCLA

David Fink
Climate Resolve

Dr. Larry Kalkstein
Applied Climatologists

Dr. Kimberly Kirner
Cal State Univ. Northridge

Dr. Regan Maas
Cal State Univ. Northridge

Jonathan Parfrey
Climate Resolve

Dr. David Sailor
Arizona State University

Dr. Scott Sheridan
Kent State University

Kurt Shickman
Global Cool Cities Alliance
We tested “prescriptions” combining

Tree cover + Solar reflectance (albedo) of roofs and pavements

We evaluated the prescriptions’ impacts on

Temperature, humidity Mortality reductions Air mass frequencies Climate projections

Can land cover changes cool Los Angeles enough to save lives?
HEALTH OUTCOMES

Mortality

Deaths
- may not be diagnosed as heat-caused or heat-related
- “excess deaths” are over and above those expected normal for the time period, based on historical averages

Morbidity

Any episode of illness, impairment or degradation of health
- hospitalizations
- emergency room visits
- ambulance calls
Prescription Scenarios

<table>
<thead>
<tr>
<th></th>
<th>Tree Cover</th>
<th>Solar Reflectance (Albedo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx 1</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Rx 2</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Rx 3</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Rx 4</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

Tree Cover Prescription Metrics

- **Baseline** = 16% for LA County; variable by district.
- **Low** = 25% relative increase (baseline x 1.25)
- **Medium** = 100% relative increase (baseline x 2)
- **High** = 40% tree cover (regardless of baseline)

For example, for LA County baseline of 16%, a low scenario would be an increase to 20%; medium to 32%; and high to 40%.

Solar Reflectance Prescription Metrics

- **Baseline** = Steep roofs reflect 10% of solar energy. Flat roofs reflect 30%.
- **Low** = Steep roofs reflect 25%. Flat roofs reflect 63%. Roads reflect 20-25%.
- **Medium** = Steep roofs reflect 30%. Flat roofs reflect 70%. Roads reflect 30%.
- **High** = Steep roofs reflect 35%. Flat roofs reflect 75%. Roads reflect 35%.
AN AIR MASS APPROACH TO EVALUATE HEAT-HEALTH RELATIONSHIPS

- Led by Dr. Larry Kalkstein, our researchers evaluate “weather situations” rather than individual weather elements
- Unique procedure developed in their lab, the spatial synoptic classification (SSC)
- Puts each day into a particular air mass type
- Two types particularly oppressive: Dry Tropical and Moist Tropical+

<table>
<thead>
<tr>
<th>Dry Tropical (DT)</th>
<th>Represents the hottest, driest conditions found at any location. There are two primary sources of DT: either it is transported from desert regions, or it is produced by rapidly descending air.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moist Tropical+ (MT+)</td>
<td>Hotter and more humid subset of common MT, and thus captures the most “oppressive” subset of MT days. Air mass originates over warm water bodies. Warmest nights of any air mass.</td>
</tr>
</tbody>
</table>
Mean Mortality Increases Within Oppressive Air Mass Types

<table>
<thead>
<tr>
<th>Location</th>
<th>Dry Tropical (DT) Excess mortality (% of usual)</th>
<th>Moist Tropical+ (MT+) Excess mortality (% of usual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York (11%)</td>
<td>+16.6 (7%)</td>
<td>+16.9 (7%)</td>
</tr>
<tr>
<td>Los Angeles (4%)</td>
<td>+8.4 (5%)</td>
<td>+8.4 (5%)</td>
</tr>
<tr>
<td>New Orleans (2%)</td>
<td>None</td>
<td>+3.7 (9%)</td>
</tr>
<tr>
<td>Phoenix (1%)</td>
<td>+2.7* (7%)</td>
<td>None</td>
</tr>
<tr>
<td>Rome (11%)</td>
<td>+6.2 (14%)</td>
<td>+5.0 (12%)</td>
</tr>
<tr>
<td>Shanghai (11%)</td>
<td>None</td>
<td>+42.4 (16%)</td>
</tr>
<tr>
<td>Toronto (7%)</td>
<td>+4.2 (11%)</td>
<td>+4.0 (10%)</td>
</tr>
</tbody>
</table>
MENTIMETER QUESTION #2

THINK ABOUT YOUR CITY OR TOWN.

What groups of people are most vulnerable to heat?
WE EVALUATED 4 EXCESSIVE HEAT EVENTS FOR ALL OF L.A. COUNTY AND FOR INDIVIDUAL “DISTRICTS”

<table>
<thead>
<tr>
<th></th>
<th>Hot and humid</th>
<th>Drier</th>
<th>Less extreme</th>
<th>Very hot and dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>All days MT+</td>
<td>Mix of MT and DT</td>
<td>More common event</td>
<td>DT days, Santa Ana event</td>
</tr>
<tr>
<td></td>
<td>July 22-26, 2006</td>
<td></td>
<td></td>
<td>Sept. 24-29, 2010</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MODEL RESULTS: COUNTY-LEVEL AIR TEMPERATURE DIFFERENCES

County-level mitigation Rx 1; Low tree cover, high reflectance
2m Air T differences: Control - Rx1
Heat Wave: August 26, 2009
District-Level Analysis

- County divided into 18 unique and rather homogeneous, heat-vulnerable districts
- Most were around 300,000 people
- Some districts proved to be problematic (e.g., missing data, low population densities)
- We reduced the number of districts to be evaluated to 11
MORTALITY REDUCTIONS BY DISTRICT

Low-income, more densely populated districts:

- had the **greatest increases in heat-related mortality** during heat waves
- showed the **greatest mortality reductions from cooling prescriptions**

There were some unexplained exceptions:

- low-income, densely-populated District 10 showed little impact
- higher-income, low-density District 16 showed improved outcomes
How many years could climate-change induced warming be delayed?

Average temperature reduction of land cover prescriptions:
- Rx 1: -1.1°C
- Rx 2: -1.0°C
- Rx 3: -1.0°C
- Rx 4: -1.7°C

Years of delay:
- Rx 1: 69 years
- Rx 2: 63 years
- Rx 3: 63 years
- Rx 4: 107 years

Legend:
- Business-as-usual emissions (RCP 8.5)
- Moderate mitigation (RCP 4.5)
SUMMARY OF STUDY FINDINGS

Temperature reductions often exceeded 1.0°C (1.8°F), and up to 2.0°C (3.6°F), a life or death difference

25%+ reductions in heat-related deaths are possible, saving dozens of lives during the worst heat waves

Oppressive air masses could be shifted to more benign ones

Heat impacts of climate change could be delayed ~25-60+ years

GLOBAL HEAT HEALTH INFORMATION NETWORK
LOS ANGELES URBAN °COOLING COLLABORATIVE
#HEATHEALTH
www.ghhin.org
COOL CITY IMPLEMENTATION: TREES

- Tree planting and care efforts led by NGOs and local government
- Focused on low-canopy neighborhoods
- Funding support from local and state agencies
COOL CITY IMPLEMENTATION: COOL ROOFS, COOL STREETS

2013 - cool roof ordinance applies to all new and refurbished homes

2015 - residential cool streets pilot
COOL CITY IMPLEMENTATION: BOLD TARGETS AND MANDATES

Target
Reduce urban/rural temperature differential by at least 1.7 degrees by 2025; and 3 degrees by 2035
Baseline: 3.5°F* in 2012
Source: UC-MCLD Center for Atmospheric Environment, using NASA MODIS data
*Annual-mean daytime

Countywide:
Baseline:
LA County had 20% urban tree canopy cover as of 2016.
2025 Target:
Increase urban tree canopy cover by 10% of baseline
2035 Target:
Increase urban tree canopy cover by 15% of baseline
2045 Target:
Increase urban tree canopy cover by 20% of baseline
Data Source: Los Angeles Regional Imagery Acquisition Consortium; TreePeople; UCLA CCSC

Target
Increase tree canopy in areas of greatest need by at least 50% by 2028 to grow a more equitable urban forest that provides cooling, public health, habitat, energy savings, and other benefits
Baseline: Average across City is 20%; to be updated upon completion of citywide tree inventory
Source: MacPherson, 2008
HOW DO WE ADDRESS URBAN FOREST (IN)EQUITY?

New partnerships and roles working with NGOs, communities, government, and academia:

- Urban Forest Equity Visiting Scholar
- City Forest Officer
URBAN FOREST EQUITY PARTNERSHIP | TREE PLANTING ‘TIERS’

TIER 1

No site modification is needed. Tree canopy goals can be achieved by planting vacant existing vacant locations.

TIER 2

Minimal site modifications needed. Tree canopy goals can be achieved with additional financial resources and possible site modifications within current City and County standards.

TIER 3

Drastic site modifications needed. Significant tree canopy increase cannot be achieved with existing infrastructure; drastic infrastructure and policy modifications are needed to reach canopy equity and public health targets.
COSTS AND BENEFITS OF ‘TIERS’

Tier 2 Assessment

Woodman Avenue, San Fernando Valley
THANK YOU!

Edith de Guzman
eb3@ucla.edu | edithdeguzman.com
Director and Co-founder, Los Angeles Urban Cooling Collaborative
PhD Student, UCLA Institute of the Environment & Sustainability