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Summary
Background Acute health-care systems are a final layer of protection against growing climate impacts on population 
health. Climate disasters over the past decade have resulted in surges of patients seeking emergency care when 
preventive measures fall short. We aimed to understand how acute health-care delivery and access is vulnerable to 
climate disasters.

Methods We built a discrete event simulation model to replicate acute health-care system dynamics during Canada’s 
deadliest climate disaster—the 2021 heatwave. We used public data and government reports to estimate resource 
capacity per capita and interconnected trajectories to define the movement of patients between resources. In an 
intervention scenario, we evaluated the efficacy of a package of three interventions in the emergency department and 
prehospital settings (upstaffing before the disaster, mass casualty procedures, and outpatient cooling beds). Across a 
29-day period, we measured six key performance indicators (KPIs) to compare statistical changes in waiting times 
between baseline and intervention models (physician initial assessment waiting time; waiting time for emergency 
department bed among most acute patients; waiting time for emergency department bed among least acute patients; 
ambulance response time; boarding time; and total time in the emergency department). Using Monte Carlo methods, 
we ran both baseline and intervention models 100 times.

Findings We validated baseline model outputs against real-world data, with no statistically significant differences in all 
KPI medians. The baseline model showed significant negative effects on five of the six KPIs during the heatwave 
compared with the preheatwave period. Under the intervention model, four KPIs had significant improvements 
during the heatwave compared with the preheatwave period while the other two KPIs did not significantly change. 
Notably, emergency department waiting times decreased by over 35% with the interventions.

Interpretation The model replicated real-world patterns and was a valid representation of system dynamics. Our 
findings showed that even a small surge in patients can be detrimental to health-care access and delivery. The model 
also suggests that health-care delays during climate disasters can be avoidable with proactive planning.

Funding The Government of British Columbia.

Copyright © 2025 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC 4.0 
license.

Introduction
Climate hazards threaten the safety of health-care 
providers, disrupt utility networks, and damage health 
facilities precisely when demands for health care 
surge.1–3 Although upstream adaptations (eg, addressing 
social determinants of health) are foundational to 
climate resilience, there is also a need to ensure acute 
health-care systems are able to deliver care when 
preventive measures fall short.4,5 Indeed, the rapid 
increase in climate threats to health, high uncertainty 
around cascading impacts, and slow deployment of 
transformative adaptations mean that climate impacts 
on acute health are likely to increase in the short term 
unless disaster preparedness is also scaled up.3,6,7

Despite the growing pressures climate change is 
placing on acute health-care systems, there is 
insufficient evidence of intervention effectiveness. This 
gap in evidence is due in part to challenges of both 
measuring disaster impacts on health-care delivery and 

safely testing the efficacy of interventions.6 This study 
aimed to address that gap by exploring how simulation 
modelling can improve preparedness for climate 
disasters across acute health-care systems. Our 
objectives were to validate use of simulation models for 
climate disaster planning in health systems, measure 
the potential impacts of a large disaster on health-care 
access, and evaluate the efficacy of select interventions 
in reducing health system impacts during a large 
disaster.

Methods
Study design and case study setting
We used a discrete event simulation (DES) model for 
this study. DES models are well established tools for 
health system performance evaluation and planning.8,9 
The models are ideal for analysing bottlenecks and 
patient flow dynamics and testing health system 
interventions. Although DES models have been used to 
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assess health system impacts of earthquakes, mass 
shootings, and the COVID-19 pandemic,10–12 they have 
not been used to analyse climate disaster impacts to our 
knowledge. This study did not require ethics approval; 
no patient or survey data were used in the analysis.

We used the 2021 British Columbia extreme heat 
event (ie, heatwave)—Canada’s deadliest climate 
disaster—as a case study.13,14 Our modelling experiment 
focused on an 8-day period from June 25 to July 2, 2021. 
During this time period, temperatures across the 
province were between 15°C and 20°C higher than 
seasonal historic means, and night-time temperatures 
rarely fell lower than 20°C. The Canadian national 
temperature record was broken 3 days in a row, reaching 
an all-time high of 49·6°C. The heat anomalies were at 
least 150 times more likely due to anthropogenic climate 
change.15 Although the severity of the heatwave varied 
across the province, all five million residents were 
placed under a heat advisory—indicating risk of heat 
illness and death.14

Demands on acute health-care systems increased 
substantially during the 2021 heatwave (figure 1). Across 
British Columbia, hospital admissions increased by 6%.16 
The largest increases in demand were associated with the 
highest acuity patients; Canada Triage and Acuity Scale 
(CTAS) 1 patients (1 being the highest acuity, 5 being 
the lowest acuity) increased by 151·9% across Metro 
Vancouver (population of 2·6 million).16,17 Subsequently, 
some of British Columbia’s hospitals had all-time records 
for daily emergency department visits. Similar increases 
in emergency department visits and health-care demands 
were observed in Seattle, WA, USA (200 km south), 

although the state’s mortality rate was about half that of 
British Columbia’s.18

Increased heat morbidity and mortality over the 8-day 
extreme heat event led to widespread delays in acute 
health-care access across British Columbia and the 
Pacific Northwest. Government reports indicate that 
waiting times for ambulances in British Columbia nearly 
doubled for the most acute patients; waiting times for 
low acuity calls exceeded 20 h in some parts of the 
province.14,19

Model development
We used an iterative process to design, verify, and 
validate the model and experiment results. This process 
consisted of four key stages: (1) conceptualising the 
health system; (2) translating the concept into code; 
(3) running a baseline model to simulate the disaster; 
and (4) running a model with hypothetical interventions 
to reduce care delays.9,20,21 We describe each of these steps 
in accordance with the standardised guideline STRESS  
(appendix pp 2–8).22

We focused on the areas of the acute health-care system 
most affected by climate disasters: prehospital care, 
emergency departments, intensive care units (ICUs), and 
medical hospital wards. After identifying these areas, we 
developed a conceptual patient flow diagram that depicted 
how patients move through the health system and the 
required resources (both physical and human resources) 
at each stage of care (appendix p 2).21,23 Patient flow 
mapping was done with coauthor physicians who work 
in each of these care settings and was informed by other 
Canadian DES models.8,24,25

Research in context

Evidence before this study
Climate hazards associated with acute illness and injuries are 
projected to increase in both size and frequency around the 
world. Acute health-care services—emergency departments, 
inpatient wards, and prehospital emergency medical 
services—can experience dramatic increases in patient volume 
during extreme heat events, hurricanes, and wildfires. However, 
there is insufficient evidence about risk factors of acute health-
care systems becoming overwhelmed during climate disasters. 
Further, there is insufficient evidence of interventions to reduce 
vulnerability. To contextualise this study and identify previous 
similar work, we searched PubMed, Scopus, and Google Scholar 
to identify original research articles published from Jan 1, 2010, 
to Sept, 30, 2024, that analysed impacts of climate change on 
acute health-care systems. The search terms used were: 
“climat*” AND ( “hospital” OR “patient” OR “healthcare” 
OR “health-care”) AND (“bottleneck” OR “delay” OR “mass 
casualty”). We found only five studies that explicitly analysed 
the impacts of climate change on acute health-care systems. 
Three of the identified studies were qualitative case studies and 
the other two were retrospective reviews of quantitative data. 

None of these studies included modelling or quantitative 
analysis of interventions.

Added value of this study
To our knowledge, this is the first study to use simulation 
modelling as a tool to assess climate impacts on health-care 
delivery and access. Our results show that without proactive 
planning, even a small surge in patients during a climate event 
can be detrimental. Further, we present a validated and open-
source tool to support health system planning, cost–benefit 
analyses, and postdisaster analysis.

Implications of all the available evidence
Climate change is rapidly shifting the nature of many hazards, 
including extreme heat, the deadliest natural hazard globally. In 
the case of extreme heat preparedness, our study suggests that 
proactive upstaffing, implementation of plans for emergency 
department decanting, and use of mass casualty protocols can 
reduce acute health-care delays and probably save lives. Although 
climate hazards are increasing in frequency and magnitude, a rise 
in climate disasters and mortality is not inevitable.

See Online for appendix
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We identified 16 relevant resources across the acute 
health-care system to model (figure 2). We used public 
data and government reports to estimate resource 
capacity per capita (appendix p 5). Generally, we 
assumed the number of available resources did not 
change throughout the day, with the exception of a 
decrease in available ambulances between 2000 h and 
0800 h by 25% (appendix p 4). We also allowed for up to 
a 15% increase in emergency department beds and 
10% increase in non-ICU hospital beds when queuing 
times became excessive, which reflects the real-world 
use of hallway beds and so-called normal operation at 
more than 100% capacity in many hospitals. In the 
intervention scenario, we increased the number of 
select resources to reflect proactive upstaffing in the 
emergency department and prehospital settings 
(appendix p 8).

We used interconnected trajectories to define the 
movement of patients between resources (figure 2). 
Trajectories represented distinct sets of decision trees and 
resource assignments and were constant across all 
baseline runs. In the intervention scenario we altered 
criteria for resuscitation attempts and emergency 
department decanting.

We designed patient generators that randomly created 
patients across Poisson distributions of arrival times. We 
estimated patient volumes related to heat and not related 
to heat using public data (appendix pp 6–7). Generators 
were designed to assign properties to each patient, such 
as triage score and whether they would die. These 
properties were also randomly assigned based on 
predefined Poisson distributions.

We used three techniques to validate the model: 
internal validation, sensitivity analysis, and quantitative 
validation of indicators.20 Internal validation was done by 
the three physician coauthors who work in various 
sectors of the health system.9 Sensitivity analyses were 
based on data from Monte Carlo runs and a range of 
input parameters used to reflect patient volumes across 
the five health regions. Finally, we quantitatively validated 
the model by comparing modelled throughput statistics 
with real-world values (appendix pp 9–10).21 We based 
health system capacity and patient volumes on a service 
area of 100 000 people. A per-capita approach allowed for 
generalisation across the region and transferability to 
other countries.

In the baseline runs we sought to replicate real-world 
conditions without any interventions. We simulated the 
health system dynamics leading up to (14-day period), 
during (8-day period), and directly after (7-day period) 
the 2021 heatwave. We used Monte Carlo runs to 
capture uncertainty; 20 runs for each of the 
five health regions in British Columbia, resulting in 
2100 days of preheatwave and postheatwave data and 
800 days of heatwave data for a total of 2900 modelled 
baseline days. Baseline runs did not include any system 
interventions.

We used R Cran language for the model. Specifically, we 
used RStudio with the packages simmer and simmer.
plot.26 Each component of the code is detailed in the 
appendix (pp 2–8). All code is available on GitHub

Evaluation of heatwave impacts
We used key performance indicators (KPIs) to analyse 
the precision of the model and to determine the effects 
of the 2021 heatwave in the modelling environment. We 
selected six KPIs commonly used across Canadian 
health systems to measure acute health-care delivery: 
physician initial assessment waiting time; waiting time 
for emergency department bed among most acute 
patients; waiting time for emergency department bed 
among least acute patients; ambulance response time; 
boarding time; and total time in the emergency 
department.

Because of the long-tailed distributions in both the 
real-world and modelling results, we analysed median 
values and 90th percentile cutoffs (a standard practice in 
health system evaluation). To analyse changes between 
the preheatwave, heatwave, and postheatwave periods, 
we used a paired Wilcoxon signed rank test.27

Evaluation of intervention effectiveness
We selected a package of three interventions implemented 
simultaneously for the study: upstaffing before the 

Figure 1: 2021 heatwave mortality across British Columbia, Canada
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For the code see 
https://github.com/ 
dylangclark/SimulationModel
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disaster; mass casualty procedures; and establishing 
community-based cooling beds (appendix p 8). These 
interventions were all previously qualitatively discussed 
in other heat-response studies and in postdisaster 
analyses; however, none were widely implemented in the 
real-world 2021 heatwave.12,14 To evaluate efficacy of the 
intervention scenario, we modified the baseline model 
parameters to reflect the intervention assumptions, then 

ran an additional 2900 days of the model. Finally, we 
analysed statistical changes in KPIs between the baseline 
model ensemble and the intervention model ensemble.

Role of the funding source
The funder of the study had no role in the study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Figure 2: Patient flows and resources that were the foundation for the simulation model
Patient flows and criteria are indicated with arrows. A full list of all resources included in the model and their specific capacity is in the appendix (p 4). CTAS=Canada Triage and Acuity Scale. 
ED=emergency department. ICU=intensive care unit.
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Results
The model produced a total 762 001 patients across all the 
Monte Carlo runs (381 043 for the baseline scenario and 
380 958 during the intervention). Over the 29-day 
simulation period there were an average of 
131·4 emergency department visits per 100 000 patients 
per day. The mean incidence of daily emergency 
department visits was 129·5 per 100 000 patients 
preheatwave and postheatwave and 136·4 daily visits per 
100 000 patients during the heatwave (figure 3). The 
mean incidence of simulated daily hospitalisations 
was 21·4 per 100 000 preheatwave and postheatwave and 
23·2 during the heatwave. The mean mortality incidence 
was 1·8 deaths per day per 100 000 patients during the 
preheatwave and postheatwave, which increased to 
2·9 per 100 000 during the heatwave.

Median real-world throughput times were between the 
first and third quartiles of the model results for all KPIs 
(appendix pp 9–10). We also observed alignment between 
the modelled data distributions and real-world data. 
Although there were few real-world observations of 
waiting times during the 2021 heatwave, the model did 
resemble all available data.

The simulated increase in patients during the heatwave 
resulted in significant delays across five of the six KPIs 
(table). The largest change in delays happened at the entry 
stages of the system (eg, ambulance response time and 
waiting time for an emergency department bed). The 
number of CTAS 4 patients who waited more than an 
hour for an ambulance increased from 0·2% preheatwave 
to 2·8% during the heatwave. Additionally, the median 
wait for a physician initial assessment was 70 min during 
the preheatwave period and increased by 13 min during 
the heatwave (appendix pp 11–12). Delays further into a 
patient’s care (eg, boarding time and ICU length of stay) 
were either insignificant or decreased slightly (table). To 
capture these long-tailed changes, we looked at delays 
among the 90th percentile of runs (figure 4). The physician 
initial assessment 90th percentile across all baseline runs 
was 319 min preheatwave and increased by 72 min during 
the heatwave. Similarly, the 90th percentile waiting time 
for an emergency department bed among the least acute 
patients increased from 354 min to 446 min.

In the prehospital setting, the 90th percentile wait for 
an ambulance increased by 0·4 min (table), while the 
99th percentile waiting times increased from 22 min to 
257 min (increase of 3 h 54 min). There were no 
statistically significant changes to the KPIs during the 
postheatwave period compared with the preheatwave 
period across both medians and 90th percentiles.

The highest volume of heat-related patients was in the 
Fraser Health region, where there was a mean increase 
of 11·7 patients arrivals and 2·2 deaths per 100 000 patients 
per day (figure 3). The lowest increase in patients and 
deaths during the heatwave was in the Vancouver Island 
Health region with an increase of 3·6 patients and 
0·6 deaths per 100 000 patients (appendix pp 10–11). 

These differences were a direct result of model inputs. 
Causes of the variation in regional morbidity and 
mortality has been discussed in other work.14,16,17

The median physician initial assessment wait increased 
by 20% during the heatwave period in the Fraser Health 

Figure 3: Modelled number of patient arrivals per hour by health authority with identified mode of arrival
The light blue area represents the heatwave period in the model. The largest increase in patient volume was in the 
Fraser Health region, while the smallest increase was in the Vancouver Island Health region. The circadian pattern 
of patient arrivals is visible with the large daily peaks and valleys.
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Indicator description Median change 
during heatwave 
(95% CI); p value

90th percentile 
change during 
heatwave (95% CI); 
p value

Physician initial 
assessment waiting 
time

Time from patient triage to 
being seen by a physician

Increase of 12·7 min 
(10·8 to 14·6); 
p<0·0001

Increase of 72·1 min 
(58·4 to 86·3); 
p<0·0001

Waiting time for 
emergency 
department bed 
among most acute

Time from waiting room 
arrival to being moved to an 
emergency department bed 
among CTAS 1 and CTAS 2 
patients

Increase of 1·2 min 
(0·9 to 1·4); 
p<0·0001

Increase of 9·7 min 
(7·7 to 11·9); 
p<0·0001

Waiting time for 
emergency 
department bed 
among least acute

Time from waiting room 
arrival to being moved to an 
emergency department bed 
among CTAS 4 and CTAS 5 
patients

Increase of 2·8 min 
(2·1 to 3·4); 
p<0·0001

Increase of 92·2 min 
(76·8 to 108·0); 
p<0·0001

Ambulance 
response time

Time between 911 call and 
ambulance arrival to scene

Increase of 0·2 min 
(0·1 to 0·3); 
p=0·0001

Increase of 0·4 min 
(0·2 to 0·5); 
p<0·0001

Boarding time Time from hospital 
admission decision to 
physically being moved to 
hospital ward

Decrease of 15·1 
min (–25·9 to –4·5); 
p=0·0052

No significant 
change (–31·0 to 8·5) 

Total time in 
emergency 
department 

Time from getting an 
emergency department bed 
to being discharged or 
moved to a hospital bed

Increase of 4·0 min 
(2·4 to 5·5); 
p<0·0001

Increase of 24·7 min 
(12·6 to 36·9); 
p=0·0002

We analysed the magnitude and significance of change between the preheatwave and heatwave periods using a paired 
Wilcoxon signed rank test. CTAS=Canada Triage and Acuity Scale. 

Table: Six key performance indicators measuring changes across time periods
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region and 17% in the Interior Health region, while the 
smallest increases were in the Vancouver Coastal Health 
and the Northern Health regions. Similarly, ambulance 
response times increased most in the Fraser Health 
region (increase of 3%) and the Interior Health region 
(increase of 1%). The smallest change to ambulance 
response time was in the Vancouver Island Health and 
Northern Health regions.

There were significant reductions in system delays 
under the intervention scenario (figure 5). All KPI 
median values, except boarding time, showed statistically 
significant reductions. Boarding time increased by about 
15 min during the heatwave compared with the baseline 
scenario (appendix p 12). In some cases, the intervention 
scenario resulted in heatwave waiting times dropping 
below the preheatwave values. Median emergency 
department waiting times decreased during the heatwave 
with the intervention compared with the preheatwave 
period (decrease of 36%), whereas the emergency 
department waiting times increased by 4% under the 
baseline scenario. The physician initial assessment wait 
also decreased during the heatwave with the intervention 
(decrease of 27%) compared with an increase of 
16% under the baseline scenario. This improvement 
represented an average of 35 patients per 100 000 per day 

who had a physician initial assessment within 120 min, 
who otherwise would not have been seen in that 
timeframe. The modelled interventions resulted in 
ambulance response times remaining unchanged 
between the preheatwave and heatwave period compared 
with the baseline scenario that saw ambulance wait 
increasing by a median of 15 s and multihour waits for 
less acute calls. The 99th percentile of ambulance waits 
during the heatwave dropped from 257 min to 21 min 
with the intervention.

Discussion
The model was able to replicate real-world patterns 
across the acute health-care system and was a valid 
representation of system dynamics. Further, the 
hundreds of Monte Carlo runs were a useful approach 
to capturing uncertainty and variable system dynamics.

The model was slightly less sensitive to bottlenecks 
during the heatwave compared with the limited real-
world indicators that were available. For example, 
ambulance response times were reported to be between 
9 min and 13 min for CTAS 1 patients in parts of British 
Columbia, while the model resulted in a range of 
6–13 min. There was also variation between the modelled 
boarding time and real-world observed boarding time. 
This difference between the model and the real world 
could be due to tipping points or system limits that were 
not captured in the model (eg, ambulances breaking 
down due to heat or employees calling in sick). Indeed, 
our model did not reflect infrastructure failures, which 
inhibited patient care in the real world (CT scanner 
failures, aeromedical groundings, and ambulance 
breakdowns).14 Real-world boarding time increases could 
have also been impacted by COVID-19 protocol and pre-
existing hospital bed shortages, which we did not capture 
in the model.

Our findings show that even a small surge in patients 
can be detrimental to acute health-care access. The 
results suggest that the increase in acuity and mortality 
among heat-affected patients produced delays in both the 
prehospital and emergency department settings. This 
finding is echoed in postdisaster reviews that have 
highlighted delays in ambulances returning to service 
due to emergency department backups, insufficient 
decanting of patients who needed to be cooled, and 
challenges in resource allocation.14,19

The model showed tipping points and thresholds across 
the system, which could be useful for decision making. 
For example, we observed the importance of emergency 
department decanting and clearing waiting room 
backlogs throughout the night. We also observed that 
when the ratio of high acuity patients and resuscitations 
increased even by a small percentage—only 0·6 more 
high acuity patients per 100 000 people per day during the 
heatwave—there were large effects across the system.

The model did consistently recover within a few days of 
a surge; there were no significant changes between the 

Figure 4: Distribution of modelled 90th percentile waiting times
These graphs depict changes in the distribution of 90th percentile cutoffs across all the Monte Carlo runs (n=100) 
for each key performance indicator. The dashed line reflects the median 90th percentile cutoff of all runs during the 
preheatwave and heatwave periods. Except for boarding time, there were statistically significant changes in the 
distribution of all KPIs between the preheatwave and heatwave periods. Some indicators, such as ambulance 
response time, had a long-tailed distribution across the model runs during the heatwave.

18 19 20 21 22

Di
st

rib
ut

ed
 b

y 
m

od
el

lin
g 

pe
rio

d

90th percentile cutoff (min)
1200 1300 1400 1500 1600

90th percentile cutoff (min)
650 700 750 800 850
90th percentile cutoff (min)

Ambulance response time Boarding time Total time in emergency
department 

300 400 500 40 50 60 70 80 200 300 400 500

Waiting time for emergency
department bed among least acute

Di
st

rib
ut

ed
 b

y 
m

od
el

lin
g 

pe
rio

d

Physician initial assessment
waiting time

Waiting time for emergency
department bed among most acute

Preheatwave
Simulation period

Heatwave



Articles

www.thelancet.com/planetary-health   Vol 9   May 2025 e362

preheatwave and postheatwave KPIs. Although available 
real-world indicators also showed a swift recovery across 
British Columbia health systems, a pure modelling 
approach might miss important qualitative changes such 
as stress and burnout among health-care personnel, 
which can have detrimental system impacts after a 
climate disaster.28

Importantly, the model results suggest that health-
care delays and subsequent impacts could be almost 
entirely avoided if key interventions are deployed 
leading up to and during a heatwave. We observed that 
the suite of interventions targeting both patient 
resource allocation (mass casualty procedures and non-
emergency department decanting beds) and available 
resources (upstaffing) were important. The findings 
show that simulation modelling can be used to plan 
for and develop evidence-based health system 
interventions.

We chose to create a model that generalised health 
system dynamics at a regional scale. However, across 
Canada as well as in other countries, rural hospitals are 
often more resource constrained and might have less 
cushion to absorb shocks, potentially increasing 
vulnerability to cascading impacts. These dynamics 
deserve more research—especially amidst recent 
temporary closures of emergency departments across 
rural regions of Canada, the USA, and the UK.29,30

One key difference between our model and real-world 
systems is the narrow boundary of our model. We 
developed and validated the model for estimating 
operational dynamics in an acute health-care setting; we 
did not include other elements of the health system such 
as posthospital care (eg, rehabilitation, home care) 
because interactions might have compromised our 
design goals.

We made several assumptions that might have affected 
results. We did not explicitly model resources for patient 
diagnosis and treatment (eg, imaging, laboratories, 
operating rooms), instead we used a probabilistic 
function based on the patient CTAS score for a general 
diagnosis and treatment time. Further, we excluded 
some institution-specific care trajectories, including 
designated psychiatric areas, specialist consultations, or 
inter-facility transports (these dynamics can reduce 
delays under a Nash equilibrium or similar balancing). 
We acknowledge these limitations and note that models 
are not perfect, but some are useful. The validation 
results show that our novel simulation model can 
capture health system dynamics during a major climate 
disaster.

This paper not only shows ways to plan for risks but 
also shows how vulnerable systems can be if proactive 
steps are not taken. As the severity and frequency of 
health threats continue to shift, decision makers must 
evaluate the potential impacts on the acute health-care 
system and proactively address vulnerabilities. When day-
to-day acute health-care access is constrained, the system 

is not well positioned to absorb an unanticipated shock, 
which is particularly relevant due to present emergency 
department waiting times, overcrowding in hospital 
wards, and emergency department closures in Canada 
and across the USA and Europe.30 Conversely, our 
modelling suggests that investments that improve 
baseline acute health-care access could also reduce 
bottlenecks during a disaster. Additional planning and 
investment are probably needed to better prepare acute 
health-care systems for climate disasters. Our open-
access and validated simulation model could be a useful 
tool for decision makers and system managers.
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Figure 5: Health system delays under the baseline and intervention scenarios
Interventions are described in greater detail in the appendix (p 8). The distribution of change in median times 
(ie, median heatwave delay minus median preheatwave delay) across all model runs (n=100) is captured with the 
shaded area here. The box plot signifies mean and SD for both the scenarios.
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