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Abstract

Climate change increasingly threatens global health as more frequent extreme heat events, com-
bined with varying humidity levels, exacerbate both direct and indirect health risks, strain energy
resources, and lead to economic loss. Vulnerable populations, including the elderly, young chil-
dren, and those with preexisting health conditions, face greater risks due to lower physiological
adaptive capacity. Those from socioeconomically disadvantaged communities are also vulnerable
because of increased exposure and reduced capacity. While research has expanded our under-
standing of the physiological effects of extreme heat and humidity, challenges persist, including
inconsistent data, lack of unified heat wave definitions, and limited knowledge of their impact on
mortality and morbidity especially in specific populations. Addressing these challenges requires
enhanced data and a comprehensive evaluation of humidity’s modifying effects. Global collabora-
tion to strengthen heat health action plans is essential, with future efforts focusing on enhancing
the accessibility and effectiveness of interventions, especially in underresourced regions.
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Heat health action
plans (HHAPs):
comprehensive public
health strategies to
mitigate the health
risks associated with
extreme heat events,
integrating various
measures to enhance
community resilience
and protect vulnerable
populations during
excessive heat

Heat health warning
systems (HHWSs):
integrated frameworks
combining
meteorological data
with public health
strategies that alert
communities and
decision-makers about
impending extreme
heat events, thereby
mitigating associated
health risks and
enhancing
preparedness

Individual Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.17
SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.18

INTRODUCTION

Over the past decades, increasingly frequent and extreme heat events have characterized the
era of climate change. Notable examples include the Chicago heat wave of 1995; the Central
European heat wave of 2003; the Europe-Russia heat wave of 2010; the Pacific Northwest heat
wave of 2021; and the unprecedented heat waves across Europe, North Africa, the Middle East,
and China in 2022 and 2023 (1). Extreme heat events are intensifying worldwide, with hotspots
emerging in regions such as the Middle East, eastern South America, and northern Africa, where
the intensity, frequency, and duration of heat events are increasing at the fastest rates (2). These
events have caused significant mortality and widespread health impacts (3, 4). In response, govern-
ments and international organizations have developed various heat health action plans (HHAPs),
including heat health warning systems (HHWSs) (5, 6). However, current risk-reduction strate-
gies remain inadequate. Traditional evaluation metrics in HHAP and HHWS designs often fail
to account for inequalities in health risks across gender, age, and socioeconomic status, poten-
tially limiting the effectiveness of universal risk-reduction strategies in both academic research
and policymaking (7). Furthermore, while the physiological and biophysical effects of humidity
in heat-related health outcomes are well-understood (8), their modified impact on heat-related
health outcomes, particularly in vulnerable populations, remains unclear and is often overlooked
in current risk-reduction strategies. Therefore, a targeted literature review is essential to summa-
rize the current understanding of humid heat event risks, the vulnerability of specific populations,
and the gaps in current risk-reduction strategies.

In this review, we first explore the spatiotemporal variations of historical extreme heat events
since 1990.We then investigate recent epidemiological evidence regarding the effects of extreme
heat events, with special attention to vulnerability and humidity.We also analyze the development
and implementation of HHAPs and HHWSs across the world, focusing on identifying inequities
in these strategies. Finally, we propose targeted strategies and potential improvements to mitigate
the impacts of extreme heat events.

This work provides crucial insights into the occurrence, effects, and management of extreme
heat events. These insights offer valuable guidance for mitigating the impacts of extreme heat and
enhancing public health preparedness.

SPATIOTEMPORAL DISTRIBUTION OF EXTREME HEAT

Definitions and Global Distributions of Extreme Heat

Extreme heat events are characterized by both high temperatures and prolonged duration, and
they are typically classified as heat waves if they last for at least two or three consecutive days. The
Intergovernmental Panel on Climate Change describes a heat wave as a period of abnormally and
uncomfortably hot weather. However, there is no unified definition of a heat wave, with different
criteria used in the literature. The climate science literature presents a plethora of criteria based
on different temperature indicators (e.g., mean, minimum, or maximum temperatures), thresh-
olds (e.g., relative measures such as the ninety-fifth percentile), and minimum durations (e.g., at
least two or three consecutive days) (9). From a health protection perspective, an ideal threshold
should effectively detect potentially harmful occurrences while avoiding overly frequent alerts that
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Heat stress:
the perceived
discomfort and
physiological strain
associated with
exposure to a hot
environment

may lead to public fatigue and resource wastage (10). Traditionally, the threshold was determined
based on mortality rates. However, recent studies indicate that more immediate metrics, such as
emergency visits or ambulance service uses, might better reflect current risks and improve the
responsiveness of HHWSs (11, 12). Extensive efforts have been made toward identifying the suit-
able threshold. Researchers have attempted to achieve this by incorporating advanced techniques
such as machine learning; however, the most suitable threshold remains undetermined (13).

Defining heat waves based solely on temperature is a straightforward and easy-to-adopt ap-
proach. However, this method fails to capture the full extent of heat stress and does not reflect
physiological responses to heat exposure and vulnerability (14). Ambient temperature is typically
measured in the shade, which may not accurately represent actual exposure or net heat stress.
Heat stress is influenced not only by air temperature but also by humidity, mean radiant temper-
ature, and wind velocity. Wet-bulb globe temperature (WBGT), which integrates temperature,
humidity, wind speed, and solar radiation,may serve as a more accurate indicator for defining heat
waves, as it better reflects the environmental conditions that lead to heat stress (15). Therefore,
to illustrate the distribution and trends of heat waves with and without considering humidity, we
compared definitions using daily mean ambient temperature and WBGT on a global scale. We
defined heat waves as when the temperature indicator exceeds the ninety-fifth percentile of the
year-round frequency distribution for at least two consecutive days (12) from 1990 to 2023 (see
the Supplemental Methods).

Between 1990 and 2023, the mean annual number of heat wave days across all grid cells was
15.6 days (Figure 1a). During the first 17 years (1990–2006), the mean annual number of heat
wave days was lower, averaging 12.0 days (Figure 1b). However, in the subsequent period (2007–
2023), heat wave intensity increased, with the mean annual number of heat wave days rising to
19.3 days (Figure 1c). A clear global increase in heat wave days was observed, especially in Africa,
the Middle East, and parts of Asia (Figure 1d).

When using WBGT, the overall spatiotemporal patterns of heat waves were similar to those
based on daily mean ambient temperature. From 1990 to 2023, the mean annual number of
heat wave days across all grid cells was 15.5 days, increasing from 12.1 days during 1990–2006
to 18.8 days during 2007–2023 (Figure 2a–c). Overall, heat wave days defined by daily mean
ambient temperature showed a more pronounced increase compared to WBGT-based estimates
(Figure 2d).

Future Projections of Extreme Heat

Projections from physical climate models are analyzed to understand probable future changes in
heat waves. Global climate models (GCMs), such as those participating in the Coupled Model
Intercomparison Project Phase 6, are a common tool employed by the climate community to
understand broad-scale changes in heat waves under various future emission scenarios. Regional
climate models that dynamically downscale GCMs can be used to understand how heat waves
may develop and change over smaller spatial scales where impacts are experienced, noting that
GCMs with a spatial resolution of 100 km or more are required for a global assessment. Under
intensified human influence on the climate, increasing heat wave trends are expected to occur
across the world (16, 17). Projected increasing regionally averaged heat wave characteristics scale
with global temperature (16, 18); however, the strength of this correlation varies by location. For
example, in southern Europe, the intensity of regionally averaged heat wave days is projected to
double per degree of global warming, whereas in Australia, it is expected to increase by around
1.2°C per degree of global warming (16). Therefore, the precise relationship between global
warming and heat waves may be stronger or weaker than described here, depending on the specific
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a   Annual average heat wave days during 1990–2023 b   Annual average heat wave days during 1990–2006

c   Annual average heat wave days during 2007–2023 d   Trend of heat wave days (changes per decade)

0.5 2.1 3.3 4.7 6.4 15.6 days5 10 13 17 21 35 days

5 10 13 17 21 35 days 5 10 13 17 21 35 days

Figure 1

Maps of annual average heat wave days during 1990–2023 (a), in the first (b) and second (c) 17 years of 1990–2023, and the estimated
trend during the period (d). The trend in heat wave days from 1990 to 2023 was determined using Sen’s slope estimator applied to the
annual heat wave days during this period. Heat wave days in each grid cell was defined as a period of at least two consecutive days where
daily mean ambient temperature exceeded the 95th percentile of the year-round frequency distribution for that cell.

locations. At smaller spatial scales, heat waves are also influenced by factors beyond climate, such
as land use (19), local geography (20), and population demographics (21). Moreover, projecting
the occurrence and severity of record-breaking heat waves that infer adverse health impacts
presents a significant challenge for GCMs. This difficulty arises because local-scale antecedent
conditions and meteorology, crucial factors in these projections, are often not adequately captured
in model simulations that span large domains and multiple decades (22). This limitation inhibits
the development of an in-depth understanding of the future health risks posed by projected
individual heat wave events directly from large-scale physical climate models at the spatial and
temporal scales where impacts are most likely to be experienced. Therefore, assessing how heat
inflicts adverse health impacts at local and city scales requires specific and ad-hoc tools, such as
MesoNH, which can further model local-scale mechanisms such as an urban heat islands.

Recently, more projections of heat stress have been yielded from physical climate models by
incorporating humidity, benefiting from the recent improvements in data quality and availability
(23). Under a high emissions pathway, half of the world’s population, predominantly residing in
tropical and subtropical climates, could experience present-day WBGT thresholds that are 100
to 250 times more frequent by 2080 (24). Similarly, dangerous heat index values are projected to
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Heat-related
illnesses: a spectrum
of mild to life-
threatening health
conditions that occur
when the body is
exposed to excessive
heat and cannot
adequately cool itself,
ranging from
dehydration to heat
stroke

a   Annual average heat wave days during 1990–2023 (WGBT) b   Annual average heat wave days during 1990–2006 (WGBT)

c   Annual average heat wave days during 2007–2023 (WGBT) d   Trend of heat wave days (changes per decade) (WGBT)

0.5 2.1 3.3 4.7 6.4 15.6 days5 10 13 17 21 35 days

5 10 13 17 21 35 days 5 10 13 17 21 35 days

Figure 2

Maps of annual average heat wave days estimated using the wet globe bulb temperature (WGBT) during 1990–2023 (a), in the first (b)
and second (c) 17 years of 1990–2023, and the estimated trend during the period (d). The trend in heat wave days from 1990 to 2023
was determined using Sen’s slope estimator applied to the annual heat wave days during this period. Heatwave days in each grid cell was
defined as a period of at least two consecutive days where daily mean WGBT exceeded the 95th percentile of the year-round frequency
distribution for that cell.

increase by 50–100% over tropical regions, and by three to ten times across midlatitude regions
(25), along with dramatic increases in heat-related mortality attributable to global warming (26).
Under an emissions-intensive future, regions such as the Middle East may become uninhabitable
due to the increased frequency of deadly extreme heat events (27). Moreover, there is a rapidly
growing body of evidence indicating that many regions are expecting increasing trends in the
frequency and severity of adverse heat stress closely linked to intensified anthropogenic influence
on the climate.Notably,many locations susceptible to future dangerous heat stress are also densely
populated and thus more vulnerable (28, 29).

EFFECT OF EXTREME HEAT AND HUMIDITY

Extreme heat poses significant risks to human health, leading to a range of health issues, including
heat-related illnesses, cardiorespiratory diseases, infectious diseases, kidney disorders, metabolic
diseases,mental health disorders, and adverse pregnancy and birth outcomes. In addition, extreme
heat strains energy production and consumption, resulting in economic loss and further health
impacts (Figure 3).

Review in Advance. Changes may 
still occur before final publication.

9.6 Zhou et al.



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (

gu
es

t)
 IP

:  
12

9.
22

2.
16

7.
19

1 
O

n:
 F

ri,
 2

5 
Ju

l 2
02

5 
22

:4
8:

04

EG50_Art09_Guo ARjats.cls July 16, 2025 12:25

DALYWork loss

Cost of illness

Economic 
burden

Physical activityVitamin D Avoidance of outdoor exposure

Heat strain

Blood
redirection

Renal strain

Respiratory
distress
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Figure 3

Impacts of extreme heat and humidity and its mechanisms. This figure illustrates the interconnected pathways through which heat and
humidity exposure affect human health and societal systems. Direct health impacts include heat strain, dehydration, cardiovascular and
renal strain, and respiratory distress. High humidity impairs sweat evaporation, elevating core temperature, altering blood flow, and
compromising organ function. These physiological stresses increase the risk of cardiorespiratory, metabolic, infectious, and mental
health disorders, as well as adverse pregnancy outcomes. Indirect impacts arise from behavioral adaptations such as reduced outdoor
activity, leading to vitamin D deficiency and physical inactivity, and increased risks of chronic diseases, myopia, and mental health issues.
Energy impacts stem from reduced cooling efficiency and water availability in thermal power plants, along with increased electricity
demand. Economic impacts include increased healthcare costs, work productivity losses, and rising DALYs, leading to a growing
economic burden. Abbreviation: DALY, disability-adjusted life year. One DALY represents the loss of the equivalent of one year of full
health. DALYs for a disease or health condition are the sum of the years of life lost to due to premature mortality and the years lived
with a disability due to prevalent cases of the disease or health condition in a population.

Health Effects of Extreme Heat

Epidemiological studies across the globe have demonstrated a clear link between extreme heat and
increased mortality (30). Research from Europe, the United States, and Asia reveals that during
extreme heat events, mortality rates often surge, particularly from cardiovascular and respiratory
conditions. For example, the 2003 European heat wave claimed nearly 70,000 lives (31).
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Here, we summarize the epidemiological evidence on the health effects of extreme heat events,
including extreme high temperatures, heat wave days, and notable extreme heat events in the
Emergency Events Database (EM-DAT).We also investigate the disproportionate impact of these
heat events on vulnerable populations and themodifying role of humidity (for a summary of health
effects, see Supplemental Table 1).

Heat-related illness.Heat-related illness is a key indicator of extreme heat, ranging from mild
conditions like heat rash to severe cases such as heat stroke. Heat stress occurs when elevated
environmental temperatures cause the body to undergo thermoregulatory, acute-phase, and heat-
shock responses, potentially leading to heat-related illness if not appropriately managed (32).Heat
exhaustion is marked by symptoms such as nausea, vomiting, and muscle cramps due to fluid and
salt loss and can progress to organ failure in severe cases (33). Heat stroke occurs when the core
body temperature exceeds 40°C, and is characterized by symptoms such as hot, dry skin and severe
neurological disturbances, including agitation and coma (32). Despite its severity, heat stroke is
often under-reported due to misdiagnosis or delayed medical response (33). Although fatalities
from heat-related illnesses are relatively rare, mortality rates can spike during heat waves. For
example, the 2003 heat wave in France caused 1,670 deaths from heat stroke or hyperthermia
and 1,754 from dehydration, out of a total of 15,000 excess deaths (34). A recent meta-analysis
combining data from 30 studies found that for a 1°C increase in temperature above the study-
specific baseline, morbidity and mortality from direct heat-related illness rose by 18% and 35%,
respectively (35). The most significant increase in morbidity was reported for direct heat illness,
followed by dehydration (35).

Cardiorespiratory diseases. Evidence shows that extreme heat significantly increases the risks
of morbidity and mortality from cardiorespiratory diseases (36). A comprehensive meta-analysis
involving 54 studies from 20 countries further reported that extreme heat enhanced the risk of
cardiovascular and respiratory mortality by 14.9% and 18.3%, respectively (37). Region-specific
studies in China have detailed how extreme heat amplifies risks across a spectrum of cardiovascular
conditions, showing increases of 27.8% for total circulatory diseases, 26.7% for cerebrovascular
disease, and varying degrees of increases for different forms of ischemic heart disease ranging
from 25.2% to 32.2% (38). Physiological changes during extreme heat have been extensively
explored, revealing significant associations with key clinical indicators such as heart rate and
markers of inflammation and cellular stress, including neutrophil count, hematocrit, and lactate
dehydrogenase.These findings highlight the systemic impact of heat on cardiovascular health (39).

Infectious diseases. Evidence regarding the impact of extreme heat on infectious diseases re-
mains relatively sparse and inconsistent. Studies focusing on general infectious and parasitic
diseases have consistently found increased risks during extreme heat (40, 41). However, specific
diseases such as pneumonia showed inconsistent results: Chen et. al. (42) reported no signifi-
cant change in risk while others indicated increased emergency department (ED) and hospital
admissions (41, 43). Vector-borne diseases such as dengue exhibited both increases and decreases
in incidence (44, 45), suggesting that local environmental and climatic conditions play crucial
roles in disease transmission during extreme heat. Additionally, food-borne illnesses, particularly
salmonellosis, were reported to increase during extreme heat, likely due to the enhanced growth
of pathogens (46). Gastrointestinal infections such as cholera also saw increases during extreme
heat, as observed in Bangladesh, highlighting the vulnerability of certain regions to heat-induced
infectious outbreaks (47).

Kidney diseases. Extreme heat significantly influences the incidence of both acute kidney in-
juries (AKIs) and chronic kidney disease (CKD). AKIs, often triggered by extreme heat through
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mechanisms such as rhabdomyolysis and inflammation (48), can escalate into recurrent episodes
that eventually lead to CKD and potentially kidney failure (49). A study in Adelaide, Australia,
showed that daily minimum temperature was associated with an increase in daily ED admissions
for total renal disease and specific renal disease (e.g., AKIs, renal failure, CKD, urolithiasis, and
urinary tract infections) (49). Similar findings were also found in various climate zones such as
China (50), Spain (51), New Zealand (52), and New York (53). A meta-analysis combining data
from 82 studies confirmed such findings and found that with a 1°C increase in temperature, the
risk of kidney-related morbidity increased by 1%, with the greatest risk for urolithiasis (54).

Apart from direct impacts on renal health, extreme heat also leads to emerging and reemerging
vector-borne diseases such as dengue. These conditions can lead to glomerulonephritis, kidney
tubular injury, and potentially severe AKIs that can progress to CKD (55).

Mental and behavioral disorders. Extreme heat could also increase the risks of mental and
behavioral disorders (MBDs) and suicide or self-harm (56–59). However, the certainty of the evi-
dence is low due to the insufficient number of studies and varying results from different definitions
of heat waves. A meta-analysis reported that extreme heat increased the risk of MBDmorbidity by
5.0% across seven studies compared with nonextreme-heat periods (56). Another meta-analysis
involving three studies reported a 9.7% increase in hospital attendance or admissions for mental
illness during extreme heat (58). The risks of mortality due to MBD and suicide for extreme heat
were higher compared with morbidity. A meta-analysis reported that the risk of MBD mortality
increased by 3.1% per 1°C increase in temperature, while the risk of MBD morbidity increased
by 0.7% per 1°C increase in temperature (59). Similarly, the risk of completed suicide increased
by 5.2%, while the risk of suicide attempts showed a smaller increase of 1.4% per 1°C increase
in temperature (60). However, the risks of MBD mortality were heterogeneous. A comparative
study between two cities—Rome, Italy, and Stockholm, Sweden—reported an increased risk of
mortality due to psychiatric disorders in both cities during extreme heat (61). A similar risk was
also found in Adelaide (62) but not in New SouthWales (63) or Brisbane, Australia (64). Similarly,
a multicountry study across 60 countries demonstrated correlations between extreme heat and
suicide (65). Only 8 of the 60 countries showed significant results, with 3 showing an increased
risk and 5 showing a decreased risk.Nevertheless, a recent study investigating the risk of mortality
during the 2021 western North American heat dome in Canada demonstrated that the increased
risk of mortality from extreme heat events was greater among individuals with comorbid psychi-
atric conditions, such as schizophrenia and substance use disorder, compared with those with other
chronic diseases (66). Additionally, extreme heat has been associated with increased stress levels,
which may contribute to higher rates of family and intimate partner violence (67).

Metabolic diseases. Evidence consistently demonstrates that extreme heat significantly exacer-
bates the risks of morbidity and mortality from metabolic diseases (68). For example, during a
severe heat wave in July 2007 in Belgrade, Serbia, there was an excess mortality rate of 38%, with
diabetes-related deaths increasing by 286% (69). Similarly, during the 2006 California heat wave,
there were 16,166 excess ED visits and 1,182 additional hospitalizations, prominently featuring
diabetes as one of the most affected conditions (70). Further research across 48 provinces in Spain
found that extreme heat had a substantial impact on metabolic disorders, yielding a risk ratio
of 1.98 for these conditions during extreme heat periods (71). Complementary findings from a
prospective cohort study in China showed significant correlations between elevated temperatures
and critical metabolic indicators such as blood lipids, uric acid, and fasting plasma glucose (72).
Additionally, a literature review summarized that the overall pooled effect of extreme heat on
diabetes among older adults resulted in a risk ratio of 1.10 (68).This effect was particularly evident
during transitional months, with a case-crossover study in New York State indicating that each
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Apparent
temperature:
the temperature
equivalent perceived
by humans, caused by
the combined effects
of air temperature,
relative humidity, and
wind speed

Humidex:
a Canadian-developed
index that combines
air temperature and
humidity to reflect
how hot it feels to the
average person during
warm, humid
conditions; similar to
the heat index used in
other countries

interquartile rise in temperature was associated with a notable increase in diabetes hospitalizations,
primarily occurring in the month of May but not during the peak summer months (73).

Adverse pregnancy and birth outcomes. Pregnant women are particularly susceptible to the ef-
fects of heat waves, which can result in a range of adverse pregnancy and birth outcomes. Exposure
to high temperatures has been associated with increased risks of maternal stress (74), gestational
diabetes mellitus (GDM), and hypertensive disorders of pregnancy (HDP). The second trimester
is notably crucial for the development of GDM (75), while the onset and end of pregnancy are
critical periods for HDP (76).

The risks ofmiscarriage or spontaneous abortion are also associated with extreme heat,with the
third trimester being particularly vulnerable (77). This stage is crucial as heat waves can impair
fetal growth (78), increasing the risk of low birth weight and abnormal size for gestational age
(including both small for gestational age and large for gestational age) (79), as well as preterm
birth (80).

Moreover, extreme heat has been implicated in an increased risk of congenital heart defects,
with the most critical period occurring during weeks 2–8 of gestation (81). The risks extend to
stillbirths and infant mortality, particularly when extreme heat exposure occurs close to the time
of delivery. A study in the United States indicated that a 1°C increase in temperature during the
week before delivery, relative to seasonal norms, could raise stillbirth risks by 6%,which translates
to an additional 4 stillbirths per 10,000 births (82).

Disproportionate effect on vulnerable populations. Extreme heat presents significant risks to
all populations, but certain groups are disproportionately affected according to both physiological
factors, such as age, sex, and health status, and exposure factors such as occupation and socioeco-
nomic conditions. The elderly, particularly those over 65, are highly vulnerable during extreme
heat (36, 37); for example, individuals aged over 75 accounted for 90% of all excess deaths dur-
ing the 2007 heat wave in Serbia (69). This vulnerability is largely due to elevated cardiovascular
strain induced by heat stress, which is a predominant cause of death among older adults during
extreme heat (83). Young children (under 5 years old) and infants also face heightened risks due
to less efficient thermoregulatory systems and their greater reliance on adults for cooling and
protection. Reports from the 2006 California heat wave indicated a sharp increase in ED visits
among young children, underscoring the acute risks to this group (70). Sex also modifies the as-
sociations. During the 2007 heat wave in Serbia, the excess mortality in females (54%) was over
two times higher than that in males (23%) (69). Females are reported to have higher risks of heat
wave–related cardiovascular disease, pneumonia (43), and diabetes (84) than males. Conversely,
studies showed that the risk of suicide associated with extreme heat is higher among males than
females (60, 85). People with preexisting conditions, especially those affecting the cardiovascular,
respiratory, or renal systems, are at higher risk because the heat places additional stress on these
already compromised systems (84, 86). Occupational exposure further exacerbates these dispari-
ties, with outdoor workers in fields such as agriculture or construction facing higher risks due to
direct and prolonged exposure to heat and dehydration (87). Additionally, residents of low- and
middle-income countries suffer extreme heat disproportionately due to inadequate healthcare in-
frastructure and limited resources for heat adaptation, further exacerbating the health impacts of
extreme heat on these populations (36).

Modifying role of humidity.The role of humidity in exacerbating extreme heat effects is sig-
nificant and complex (88). High humidity not only increases the perceived temperature but also
impairs the body’s capacity to dissipate heat through suppressed sweat evaporation, amplifying
the physiological challenges and related health risks (8, 89). This interaction highlights the im-
portance of employing comprehensive heat indices, such as apparent temperature, WBGT, and
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humidex, to accurately assess heat stress and its related health effects. Current research has shown
that these indicators, along with the heat wave events they define, are associated with more se-
vere health outcomes (90–92). However, none of these indicators is consistently superior to other
indices or to dry bulb temperature in predicting population-level heat-related mortality impacts
(93, 94). The optimal predictor varied across different age groups, seasons, and cities (93, 94).

Moreover, epidemiological evidence regarding the modifying effect of humidity is inconsis-
tent. Some studies indicate that high temperature and high humidity increase the mortality rate
of cardiovascular disease (95) and metabolic syndromes (96). In contrast, others suggest that low
temperature combined with high humidity is a high-risk factor for mortality from cardiovascu-
lar disease (97–99). Research from the Pennsylvania State University Human Environmental Age
Thresholds Project indicates that even 34°C in humid conditions can substantially increase heart
rate, intensifying cardiovascular strain (100). In contrast, other investigations highlight scenarios
where lower humidity levels might significantly alter the impacts of extreme heat on mortality
(41) and conditions such as acute bronchitis and bronchiolitis (71). Furthermore, recent physio-
logical models show that survivability thresholds in humid conditions vary significantly based on
factors such as age and sun exposure. Older adults, in particular, have lower tolerances to heat
and humidity, highlighting their increased vulnerability compared to younger adults (101). Cur-
rent evidence emphasizes the complex and varied nature of humidity’s role in heat-related health
dynamics, necessitating tailored approaches in public health planning and response strategies to
effectively mitigate these risks.

Mechanisms for health impact of extreme heat modified by humidity.The synergistic re-
lationship between extreme heat and humidity precipitates a complex array of physiological
consequences. The direct physiological mechanisms encompass heat strain, dehydration, cardio-
vascular strain, renal strain, and respiratory distress, potentially culminating in heat exhaustion,
heat stroke, and an elevated risk in cardiovascular and respiratory morbidities and mortalities.
High humidity impedes sweat evaporation, compromising the body’s ability to cool itself, thereby
intensifying the risk of heat strain, dehydration, and cardiovascular strain. Elevated body tempera-
tures cause blood to be redirected from the core to the skin to aid in heat dissipation.This decrease
in splanchnic blood flow, along with high internal temperature, can increase gut permeability, al-
lowing bacteria to enter the bloodstream (102). As a result, widespread clotting andmultiple organ
failure can occur, which may be fatal. Individuals with cardiovascular disease are at a high risk for
heat-related illnesses, not necessarily due to overheating but because of a reduced ability to com-
pensate for increased cardiovascular strain during heat exposure (103, 104). This strain is caused
by the need for higher cardiac output to maintain blood pressure in the face of profound levels
of cutaneous vasodilation, which can lead to cardiovascular collapse in people with an underlying
cardiovascular infirmity (4). Dehydration further worsens this risk by decreasing blood volume,
which reduces stroke volume and requires a higher heart rate to maintain cardiac output. People
with preexisting kidney disease are at higher risk of renal failure during exposure to extreme heat
and humidity, primarily due to reduced blood flow to the kidneys, which can cause low oxygen
delivery and acute injury to hypoxia-sensitive areas (105). Chronic dehydration can also lead to
kidney fibrosis and CKD.

Slow and gradual increases in average temperatures can cause significant negative effects on
systems ranging from infrastructure to the human body (106). One of the indirect consequences
of extreme heat (such as in the tropics) is chronic avoidance of outdoor exposure (107), precipi-
tating vitamin D deficiency, and physical inactivity, which would incur negative physical, mental,
and even eye health issues. For example, increased outdoor activity during late adolescence and
young adulthood reduces the risk of developing late-onset myopia (≥15 years of age) (108).
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Wet-bulb
temperature (WBT):
the lowest temperature
to which air can be
cooled by the
evaporation of water
into the air at a
constant pressure

The diminution of outdoor activity, motivated by fear of heat-related illnesses, contributes to
a sedentary lifestyle, increasing the risk of chronic diseases, including obesity, diabetes, and car-
diovascular disease. Moreover, social isolation and reduced outdoor engagement can precipitate
depression, anxiety, and other mental health disorders.The health impacts of heat waves,modified
by humidity, necessitate a nuanced understanding of the direct and indirect impacts.

Energy Production and Use

Access to adequate technology to adapt to environmental conditions and reduce the health impacts
of extreme heat is of the utmost importance. However, extreme heat significantly affects power
production, transmission, and consumption (109, 110). For instance, the heat waves in Europe in
2003 highlighted the challenges faced by hydropower and thermal power plants (TPPs). These
events reduced water availability for cooling, impairing hydropower output and decreasing TPP
efficiency (111, 112). Additionally, heat waves often cause disruptions in hospital operations due
to power supply shortages or excessive demand for electricity (113). Over the past 20 years, the
interplay between heat, humidity, and water resources has underscored the critical connection
to global electricity generation (114, 115). However, the effects of compound extreme weather
events, such as high temperatures combined with high humidity, on the energy sector remain
largely unexplored.

Rising global temperatures and altered humidity patterns significantly affect water availabil-
ity, which is essential for electricity generation. Hydropower, in particular, is highly vulnerable to
climate variability due to its direct dependance on river flows and reservoir levels, which are influ-
ences by droughts, heavy rainfall, and shifts in precipitation patterns. During drought conditions,
reduced water availability limits cooling processes for TPPs, further impairing thermal efficiency
and hydropower output. Moreover, shifts in the timing and intensity of precipitation reduce the
predictability of water flows, complicating hydropower resource management.

A case study has demonstrated that wet-bulb temperature (WBT) is a key variable influencing
the efficiency of combined cycle TPPs (116). When WBT exceeds 20°C, the power plant effi-
ciency declines by approximately 1% for each additional degree Celsius. Humid heat waves, in
particular, pose a significant threat to the energy sector in subtropical Asia, especially in countries
such as India and China, where roughly 70% of the electricity is generated from TPPs (117, 118).

Meanwhile, humidity during extreme heat plays a critical role in driving electricity demand
(119). For example, during the summer,WBT is the primary factor explaining electricity demand
in the United States (120), with an increase in demand of 50% when humidity is considered,
compared to models that exclude it. By 2050, air conditioning demand in urban areas is expected
to rise by up to 75% due to increasing WBT with climate change (121).

To mitigate the impact of humid heat waves on water resources and electricity generation, sev-
eral strategies are essential, including improving water-use efficiency, developing advanced water
management technologies, and diversifying energy sources (122). Integrating renewable energy,
such as wind and solar, can also reduce dependance on both hydropower and TPPs (123).

Economic Effect

Extreme heat exposure significantly impacts healthcare costs, including ED and hospital admis-
sions. Epidemiological analysis in Sydney, Australia’s largest city, revealed that from 2010 to 2016,
the total health service costs attributed to extreme heat exposure amounted to approximately
A$252 million. The largest expenses arose from mental health hospital admissions, followed by
admissions for ischemic heart and renal diseases. These costs are expected to rise markedly to
A$387–399 million by the 2030s and A$506–570 million by the 2050s under various climate
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change scenarios (124). In the United States, the 2006 California heat wave led to an estimated
$14 million in medical costs for all-cause excess ED visits (125). In China, costs of approximately
0.18 billion CNY (about US$26 million) for ED visits were attributable to heat exposure in 2016
(126). In Germany, costs for heat-related hospital admissions were found to be six times higher
during extreme heat periods compared to nonextreme periods (127). The economic impact in
France was also substantial, with €25.5 billion attributed to selected health effects from extreme
heat between 2005 and 2009 (128). These examples underscore the growing economic burden
of extreme heat on public health systems worldwide, particularly in regions with high population
densities and limited adaptive capacity.

The burden of disease from extreme heat is also significant. An Australian study covering the
period 2003 to 2018 showed that high temperatures accounted for 2.7% of the observed burden of
kidney diseases, resulting in an annual loss of 1,446.8 years of healthy life or 6.4 disability-adjusted
life years (DALYs) per million people. Under a scenario of higher greenhouse gas emissions (e.g.,
representative concentration pathway 8.5), this burden is projected to quadruple by the 2050s
(129). Similar trends have been observed in other regions, where climate projections indicate
escalating health burdens if effective adaptation measures are not implemented.

Furthermore, extreme heat exacerbates occupational injuries and illnesses, increasing the over-
all disease burden and reducing productivity.AnAustralian study usingworkers compensation data
from 2014 to 2019 found that heat contributed to approximately 42,884 DALYs lost due to occu-
pational injuries, representing 2.3% of all occupational injury-related DALYs (130). The financial
impact on healthcare costs associated with occupational injuries due to extreme heat amounted to
approximately A$4.3 million annually (131).

Mitigation strategies to reduce the economic impact of extreme heat include implementing
workplace-specific adaptation measures, such as shaded or climate-controlled environments, flex-
ible work hours to avoid peak heat periods, and mandatory breaks for outdoor workers. Urban
greening initiatives, such as increasing tree coverage and introducing green roofs, can also help
lower urban temperatures, reducing both healthcare and energy costs. Policies promoting energy-
efficient cooling technologies and ensuring equitable access to these technologies for low-income
populations are critical to mitigating heat-related health and economic impacts.

HEAT HEALTH ACTION PLANS AND WARNING SYSTEMS :
DEVELOPMENT, IMPLEMENTATION, AND INEQUALITY

Health Protection Responses to Extreme Heat

HHAPs that include HHWSs are considered effective adaptation responses to the health risks of
extreme heat events (114). While HHAPs and HHWSs are increasingly implemented through
multisectoral collaboration, they remain primarily grounded in public health. HHAPs are the
frameworks used for planning and preparing for, mitigating, and responding to the health impacts
of extreme heat. While they should be tailored to the local context and vulnerabilities, HHAPs
commonly include the following: specification of roles and responsibilities; mechanisms for inter-
agency coordination; capacity and capability building; public awareness raising and community
outreach; health-protective actions to be taken by governments, services, healthcare professionals,
and individuals; and monitoring and evaluation of impact (132, 133).

HHWSs are an essential component of HHAPs, providing information about the location,
intensity, and duration of periods of extreme heat to prompt health protective actions. HHWSs
use climate and weather forecasts and established criteria to trigger the issuing of advisories
and warnings before, during, and after an extreme heat event that have been preagreed to by
health and meteorological authorities. These criteria usually include one or more indicators
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of population-level heat exposure (with or without humidity), as well as grade thresholds for
expected health impacts and actions. However, there is enormous diversity across HHWSs in
metrics and methods for determining appropriate trigger thresholds. A comparison of the capa-
bility of different approaches to identify days that were sufficiently hot to have significant health
impacts found little agreement between approaches (synoptic, epidemiological, temperature
humidity index, physiological classification) (134). The approach chosen is largely determined by
the human and other resources available, including technical expertise and data availability (135).

Genesis and Development of Heat Health Action Plans and Warning Systems

While extreme heat episodes earlier in the twentieth century were associated with significant
health impacts, it was not until 1995 that the first formal “Hot Weather-Health Watch/Warning
System” was established in the city of Philadelphia (136).

The imperative to develop systems to protect people from extreme heat gained ground fol-
lowing extreme heat events that led to substantial mortality, particularly in older and socially
marginalized groups around the turn of the century. By 2005, 12 countries in Europe had
HHWSs, and by 2018, 35 had HHAPs, although many of these were at the regional or city level,
rather than the national level (137). In the United States, heat watch/warning systems based on
the National Weather Service heat index metric were in place at the end of the 1990s, and a range
of plans by state, local, tribal, and territorial governments have since evolved (136). Graded heat
alerts are now issued by 122 weather forecast offices, considering a range of heat risk indicators
(138).

Other countries have now also developed national-, regional-, or city-level HHWSs and
HHAPs. However, coverage remains incomplete, especially in lower- and middle-income coun-
tries where populations are frequently the most exposed and vulnerable to the effects of extreme
heat. In the report of the 2024 UN Secretary-General’s call to action on extreme heat, the World
Health Organization (WHO) andWorld Meteorological Organization (WMO) estimate that the
global scaling-up of HHWSs in 57 countries could potentially save over 98,000 lives per year
(139).

With the greater experience in dealing with extreme heat events, the increasing accuracy of
forecasting extreme heat events, the development and implementation of HHWSs and HHAPs
in place, and the potential for some population-level acclimatization, responses continue to evolve,
including revising thresholds for issuing warnings (140) and extending the season they are active
(141). Emerging practices include the appointments of city-level “Chief Heat Officers,” naming
and ranking heat waves (142), a greater emphasis on multiagency involvement (beyond health and
weather services) (143), and novel technological approaches to communicating more personally
relevant information (e.g., Google excessive heat warnings and apps).

Equity Considerations

As noted, population coverage of HHWSs and HHAPs is incomplete and inequitable, meaning
that large populations, particularly in low- and middle-income countries, do not have access to
early warnings or interventions to protect their health. Barriers include the availability of financial
resources, lack of meteorological and population health data, and capacity to design, implement,
and evaluate these systems. While anyone can be vulnerable to extreme heat, some population
groups are more vulnerable than others. Therefore, HHWSs and HHAPs should navigate differ-
ent tiers of vulnerability, balancing the competing challenges of promoting protective actions for
those most vulnerable while avoiding overwarning for the general population, which may cause
messaging to be unheeded.
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Universal Thermal
Climate Index
(UTCI): a bioclimatic
index for describing
the physiological
comfort of the human
body under specific
meteorological
conditions

Most, if not all, HHWSs and HHAPs tailor responses toward those most at risk. Advice often
emphasizes community solidarity, encouraging people to support more vulnerable members
of their neighborhoods. Service responses include community outreach interventions, opening
of shelters, distribution of drinking water, and specific responses for mass gatherings in the
emergency phase. A few HHAPs include a longer-term focus on vulnerability and heat risk re-
duction, for instance, through social or built environment interventions. For example, England’s
Heat Health Alert action cards include year-round actions for the government, commissioners,
providers, and the non-governmental organizations (e.g., Red Cross or other local community
initiatives) to increase heat resilience such as housing, infrastructure, and data sharing agreements
(144).

However, simple communications and population-level interventions are unavoidably blunt
and limited in their capability to deal with the complex and dynamic nature of vulnerability across
diverse communities and geographies. This underscores the value of localized and community-
based action. The specific challenges faced by workers in different industries may require more
tailored and dedicated advice and responses than for the public in general.

Humidity Considerations

Given the intricate relationship between high temperatures, humidity, and heat-related illness, it
is important to consider the role of humidity in heat warning systems, as it may be key to im-
proving public health responses to heat waves, especially for vulnerable populations. Currently,
many HHWSs use only temperature-based metrics, such as maximum/minimum daily tempera-
ture (e.g., England) or an index such as the Excess Heat Factor (EHF), used in Australia. Some
consider both temperature and humidity separately (e.g., France) or use a composite metric such
as the heat index, apparent temperature, or the WBGT (e.g., United States, Canada, Germany,
Japan).However, there aremany differentmeasures of airmoisture content, and understanding the
metric used is vital to interpreting the risk to health of advisories and warnings using these mea-
sures (88). Japan revised the country’s HHWSmetric from air temperature toWBGT in 2021 (92)
because of concerns about the health risks of humidity with heat, finding improved predictive ca-
pabilities for morbidity. Australia is exploring a heat index version of the EHF for very dry or very
humid heat waves in tropical Australia (145). The European Centre for Medium-Range Weather
Forecasts has produced preoperational forecasts of a heat health hazard index, which predicts the
Universal Thermal Climate Index (UTCI) (146), a physiologically based thermal stress metric
created to reflect average human physiological perception to the outdoor thermal environment
(88).While this metric is more human-centric than others, its data inputs are quite demanding, so
its use may be limited to countries that collect the necessary data and have the technical capacity
to use it. No current HHWSs using this metric have been identified to date (135).

Effectiveness of Heat Health Action Plans and Warning Systems Action Plans

The effectiveness of HHWSs and HHAPs is often evaluated annually at the end of the season or
following years with extreme heat events. Evaluations of HHWSs and HHAPs are usually either
of process (did they operate as intended) or of outcomes (did they reduce heat-related illness and
death). Although many HHWSs and HHAPs have been implemented, the number of evaluations
of outcomes in the peer-reviewed literature is limited, with most evaluations undertaken in high-
income countries.

Evidence suggests that HHAPs and their accompanying HHWSs are effective in reducing
morbidity and mortality during extreme heat events. However, the diverse nature of these pro-
grams and varying evaluation methods limit definitive conclusions on their overall benefit (88).
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Methodological challenges, among others, include attributing impact to the HHWSs/HHAPs,
isolating the impact of particular components among the range of interventions deployed, and
comparing across studies given the heterogeneity (147). One promising approach is evaluations
that take advantage of isolated incremental changes, such as threshold changes, to understand the
impact of particular components (140). Given the increasing frequency, intensity, and duration
of heat waves, improving our understanding of effective interventions for different population
groups in different settings is urgently needed.

STRATEGIES TO ENHANCE HEAT RESILIENCE

While existing HHAPs and HHWSs have demonstrated effectiveness in mitigating the impacts
of extreme heat events, significant limitations remain, as evidenced by the high incidence of
heat-related outcomes. Equity in heat resilience, as well as the role of humidity in heat effects,
requires a more comprehensive and in-depth investigation. The findings should be promptly and
accurately applied to the development of HHAPs and HHWSs to maximize cost-effectiveness
and social benefits.

To promote equity in the development of HHWSs, efforts should prioritize financial in-
vestment, capacity building (e.g., training local health professionals, enhancing institutional
frameworks), and technological improvements (e.g., enhancing data accessibility, strengthening
heat-health relationship assessments, improving weather forecasting), particularly in low-income
regions.To enhance the accuracy and effectiveness of HHWSs, efforts should focus on conducting
regular evaluations, implementing evidence-based updates, and prioritizing the most vulnerable
populations in warning responses. A comprehensive monitoring and evaluation framework should
be established to promptly collect and analyze data, ensuring the effectiveness of interventions
and the timely updating of strategies. Updates to HHWSs should focus on incorporating new
data from ongoing research and integrating advanced technological tools to enhance accuracy
and effectiveness, such as artificial intelligence and big data analysis.

To enhance heat resilience,we propose implementingHHAPs across the following hierarchical
scales: international, national and institutional, community, and individual levels (Figure 4).

International Level

At the international level, coordinated efforts are critical for advancing climate equity and sustain-
able development, accelerating mitigation and adaptation efforts and thereby making global heat
resilience more attainable. The primary focus of international efforts is on finance investment,
technology innovation, and capacity building, while addressing the barriers posed by regional
disparities and resilience gaps (148). International organizations (e.g., WHO, WMO) play a key
role in coordinating international collaboration, guiding policy development, fostering global
consensus, promoting technical and financial support, facilitating knowledge dissemination, and
supporting capacity building to strengthen global resilience to heat.

National and Institutional Levels

At the national level, heat resilience actions are driven by political commitment, institutional
frameworks, and effective governance. National governments play a critical role in setting
clear targets, integrating various sectors, ensuring transparent decision-making processes, and
promoting inclusive and equitable policies (148). Prioritizing the needs of the most vulnerable is
crucial to ensure that adaptation and mitigation strategies are effective and equitable. At the insti-
tutional level, coordinated collaboration and capacity building are essential for the effectiveness
of heat resilience strategies. Institutions should focus not only on reducing emissions but also on
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• International efforts: finance, technology, capacity
• International organizations

• Coordinated collaboration
• Capacity building 

• Coordinating local resources and tailoring local plans
• Mobilizing emergency responses and community 

engagement
• Disseminating, educating, training, communicating
• Supporting vulnerable groups and promoting 

sustainable practices 

• Using cooling equipment
• Implementing personal cooling strategies 

• Setting clear targets
• Integrating various sectors
• Ensuring transparent decision-making processes
• Promoting inclusive and equitable policies
• Prioritizing the needs of the most vulnerable

Heat health ac tion plans

Heat health warning systems S t r a t e g i e s

International

National

Community

Individual

Establishment
(suiting local conditions)

• Assessment of heat-health 
relationships

• Determination of heat-stress 
thresholds

• Weather forecast and warnings

Evaluation
• Effectiveness of interventions
• Appropriateness of the warning 

threshold 

Improvement
• Evidence-based updates

Institutional

Figure 4

Proposed strategies to enhance heat resilience. This figure outlines a multilevel framework for heat health action plans. On the left,
heat health warning systems are structured around three core components: establishment, evaluation, and improvement. On the right, a
hierarchical strategy is proposed across international, national, institutional, community, and individual levels to enhance heat resilience.

implementing adaptation measures to mitigate and adapt to the heat effects. Institutions (e.g.,
health sectors, meteorological agencies) must work together across sectors to monitor heat risks,
develop accurate forecasts, conduct collaborative research, and prepare emergency responses,
with accurate warning information promptly communicated to the public and communities to
ensure timely and effective interventions (148).

Community Level

Communities are crucial in responding to heat, ensuring that action plans are tailored to the local
context, including strengths, constraints, and vulnerabilities (149). Communities play a vital role
in tailoring heat action plans to local needs, coordinating local resources, managing emergency
responses, mobilizing resident and institution engagement, disseminating heat health knowledge,
organizing education and training, facilitating communication with local stakeholders, supporting
vulnerable groups, and promoting sustainable practices. For example, communities are recom-
mended to establish public shelters (e.g., libraries, public pools,water refilling stations), implement
home improvement services, raise public awareness through education and training, and promote
urban greening efforts (150). Evaluating the effectiveness of these interventions is also essential
to ensure continuous improvement and adaptation to the community’s evolving needs (149).

Individual Level

At the individual level, awareness of heat risks and implementation of effective actions are criti-
cal yet challenging (4). Individual actions can include using cooling equipment and implementing
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personal cooling strategies.Using cooling equipment typically incurs high costs, such as air condi-
tioners and evaporative coolers (133). In contrast, personal cooling strategies usually involve more
accessible and lower-cost methods, such as reducing higher-calorie diets, controlling physical ac-
tivity, using fans, cooling the body (e.g., self-dousing, applying ice towels, consuming cold water
and foods), and optimizing clothing choices (133). It is important to note that the effectiveness of
these personal cooling strategies might be influenced by humidity (88). For example, in extreme
heat and high humidity environments, fans are less effective for older adults (>65 years) with re-
duced sweating capacity (151); while in extreme heat and dry environments, fans can be detrimen-
tal as they may exacerbate physiological heat strain (133). A key challenge is the limited feedback
from the core body temperature to provide adequate warning of individual heat-related trouble (4).
This challenge is anticipated to be addressed through heat health education, ambient environment
surveillance, and individual temperature monitoring (e.g., wearable thermometry devices).

SUMMARY

Extreme heat events increasingly pose significant global health risks, especially in vulnerable and
underresourced regions. Despite advancements in research and interventions, numerous chal-
lenges persist, such as inconsistent data, the lack of a unified definition for heat waves, and a limited
understanding of the combined effects of heat and humidity. Addressing these gaps necessitates
coordinated, long-term efforts. These efforts should include improved data collection and consis-
tency, the strengthening of HHWSs andHHAPs with consistent evaluations of their effectiveness
and accessibility, and enhanced global collaboration tomore efficiently mitigate the health hazards
associated with extreme heat events.

SUMMARY POINTS

1. Extreme heat events are intensifying globally, with particularly severe health impacts in
underresourced regions.

2. Extreme heat substantially affects human health, disproportionately impacting vulnera-
ble populations.

3. Epidemiological evidence on the role of humidity in modifying the effects of extreme
heat remains inconsistent.

4. Extreme heat strains energy production, increases consumption, and leads to economic
loss.

5. While existing heat health action plans and warning systems have made progress, further
efforts are necessary to enhance the effectiveness.

6. Mitigating heat health risks requires a long-term commitment and coordinated efforts,
involving top-down governance and bottom-up engagement.

FUTURE ISSUES

1. Many regions, especially theMiddle East, lack reliable epidemiological and weather data.
Global efforts are needed to support better data collection in these areas. Collaborations
with local experts in underrepresented regions such as Africa, the Asian subcontinent,
and Latin America could help address critical data gaps and enhance the effectiveness of
regional heat-related research and interventions.
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2. The absence of a unified definition of heat waves highlights the need for global col-
laboration to develop standardized criteria, enabling more effective comparisons and
interventions across regions.

3. Despite extensive research on the health effects of extreme heat, the compound risks of
extreme heat combined with humidity remain insufficiently explored. Further research
is essential to fully understand these combined impacts on health.

4. Although the biological mechanisms have been somewhat elucidated, further ex-
plorations from the mechanisms of biology, psychology, ecology, epidemiology, and
socioeconomics are warranted.

5. Regional disparities driven by socioeconomic factors affect the development and im-
plementation of heat health warning systems (HHWSs) and heat health action plans
(HHAPs).

6. Future efforts should prioritize ensuring the equity of HHWSs and HHAPs, with a
particular focus on low-income countries.

7. The implementation, effectiveness, and cost-efficiency of HHWSs and HHAPs remain
largely unassessed. Comprehensive evaluations are recommended to inform evidence-
based updates and improvements, particularly in regions such as Africa and Latin
America where such assessments are scarce.
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