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BACKGROUND: Concurrent extreme events are projected to occur more frequently under a changing climate. Understanding the mortality risk and bur-
den of the concurrent heatwaves and ozone (O3) pollution may support the formulation of adaptation strategies and early warning systems for concur-
rent events in the context of climate change.

OBJECTIVES:We aimed to estimate the mortality risk and excess deaths of concurrent heatwaves and O3 pollution across 250 counties in China.
METHODS: We collected daily mortality, meteorological, and air pollution data for the summer (1 June to 30 September) during 2013–2018. We
defined heatwaves and high O3 pollution days, then we divided the identified days into three categories: a) days with only heatwaves (heatwave-only
event), b) days with only high O3 pollution (high O3 pollution-only event), and c) days with concurrent heatwaves and high O3 pollution (concurrent
event). A generalized linear model with a quasi-Poisson regression was used to estimate the risk of mortality associated with extreme events for each
county. Then we conducted a random-effects meta-analysis to pool the county-specific estimates to derive the overall effect estimates. We used
mixed-effects meta-regression to identify the drivers of the heterogeneity. Finally, we estimated the excess death attributable to extreme events (heat-
wave-only, high O3 pollution-only, and concurrent events) from 2013 to 2020.
RESULTS: A higher all-cause mortality risk was associated with exposure to the concurrent heatwaves and high O3 pollution than exposure to a
heatwave-only or a high O3 pollution-only event. The effects of a concurrent event on circulatory and respiratory mortality were higher than all-cause
and nonaccidental mortality. Sex and age significantly impacted the association of concurrent events and heatwave-only events with all-cause mortal-
ity. We estimated that annual average excess deaths attributed to the concurrent events were 6,249 in China from 2017 to 2020, 5.7 times higher than
the annual average excess deaths attributed to the concurrent events from 2013 to 2016. The annual average proportion of excess deaths attributed to
the concurrent events in the total excess deaths caused by three types of events (heatwave-only events, high O3 pollution-only events, and concurrent
events) increased significantly in 2017–2020 (31.50%; 95% CI: 26.73%, 35.53%) compared with 2013–2016 (9.65%; 95% CI: 5.67%, 10.81%).
Relative excess risk due to interaction revealed positive additive interaction considering the concurrent effect of heatwaves and high O3 pollution.

DISCUSSION: Our findings may provide scientific basis for establishing a concurrent event early warning system to reduce the adverse health impact of
the concurrent heatwaves and high O3 pollution. https://doi.org/10.1289/EHP13790

Introduction
The Sixth Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC AR6) reported that the frequency of con-
current extreme events will increase under global warming.1,2 The
frequency and intensity of extreme heat are projected to increase
significantly.1 At the same time, the frequent high temperature will
accelerate the atmospheric photochemical reaction and increase
ambient ozone (O3) concentration,3–5 leading to co-occurring heat-
waves and high O3 pollution. Given that high temperature and O3
pollution are major global public health concerns, exposure to co-
occurring heatwaves and O3 pollution may have a concurrent
health impact. Therefore, it is crucial to quantify the effect of the
concurrent heatwaves andO3 pollution.

According to the Global Burden of Disease study, high tempera-
ture and O3 pollution have respectively accounted for >307,846 and
365,222 premature deaths worldwide in 2019.6 Epidemiological
studies have demonstrated that heatwaves and O3 pollution are asso-
ciated with increased risk for many health outcomes.7–11 However,
little is known regarding the health impacts of the combination of
both heatwaves and O3 pollution. A few studies have investigated
the interactive health effect of ambient O3 and temperature.12–15 A
recent review on the synergistic health effects of air pollution and
temperature reported an interactive effect between heat andO3 pollu-
tion exposure, showing that high temperature could enhance the
adverse health effects of O3.15 These findings suggest that exposure
to concurrent heatwaves andO3 pollution events poses amore signif-
icant threat to human health than heatwaves or O3 pollution-only
events.

Although several studies have examined the concurrent effects
of temperature and air pollution,16–18 few have been conducted in
China.14 A study conducted in California reported that certain
areas observed strong joint effects betweenO3 and heat exposure.18
Another study, also conducted in California, found that the effect
of coexposure to extreme heat and particulate matter ≤2:5 lm in
aerodynamic diameter (PM2:5) was larger than the sum of their
individual effects.16 However, these studies were conducted in
developed countries with low pollution levels. Few studies, to our
knowledge, have explored the concurrent effect of heatwaves and
O3 pollution in developing countries where ambient air pollution is
typically higher.

Some countries have implement ed early warning systems for
high temperature19–21 and air pollution.22 In the 1990s, the United
States took the lead in the early warning system of high tempera-
ture based on the population-based excess death assessment
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attributable to high temperature, which was based on synoptic cli-
matological procedure and uses model output statistics guidance
forecast data, enabling prediction of high-temperature weather
occurrence 48 h in advance.19 After experiencing a severe heat-
wave in the summer of 2003, European countries established a rel-
atively complete health early warning system for heatwaves.20,21

By contrast, the health risk warning system started relatively late in
China, with an early warning system for heat applied in Shanghai
in 2007.22 In 2013, the National Environmental Air Monitoring
Network of China was officially put into operation, releasing real-
time air pollution monitoring data, an environmental air quality
index, and other information for early warning (National Air
Quality Forecast Information Release System; https://air.cnemc.
cn:18014/). Although individual early warning systems exist for
high temperature and air pollution, an early warning system for the
combination of heatwaves and air pollution events has not been
implemented, making it impossible to alarm the population to the
occurrence of the concurrent events in time.

In the present study, we conducted a time-series analysis to
explore the mortality risk of the combination of heatwaves and O3
pollution.We first estimated the associations ofmortality with con-
current exposure events, heatwave-only, and O3 pollution-only
events using daily data for 250 Chinese counties in the summer
(from 1 June to 30 September for each year) from 2013 to 2018, we
then assessed the excess death of concurrent events, heatwave-
only, andO3 pollution-only events from 2013 to 2020 in China.

Materials and Methods

Study Area
Our study areas included 250 Chinese counties (Figure 1; account-
ing for 8.79% of all the 2,843 counties in China), with residential
population sizes varying from 500,000 to 10million. These coun-
ties were included because a) each county’s annual crudemortality
rate, whichwas calculated based on the number of deaths of people
and the residential population in each year from 2013 to 2018, as
determined by the Disease Surveillance Points System (DSPS) of
the Chinese Center for Disease Control and Prevention (China
CDC), was higher than 4.5%, and b) the fluctuation in each
county’s annual mortality rates from 2013 to 2018 was <20%.
County-level socioeconomic (SES) characteristics data were

obtained from the Sixth National Population Census in 2010,
including gross domestic product (GDP; × 10,000), the agricul-
tural population of this county (in percentage), the low-income
population (population with a monthly income of <2,000 CNY; in
percentage), the low–normalized difference vegetation index
(NDVI) areas (proportion of areas with an NDVI of <0:4; in per-
centage), population living alone (in percentage), the population
>65 years of age (in percentage), the illiterate population (in per-
centage), the minority population (proportion of people ≥15 years
of age who do not recognize characters; in percentage), and popu-
lation density (persons per square kilometer).

Mortality Data
Daily mortality data for the study counties were obtained from
the DSPS of the China CDC for the summer season (from 1 June
to 30 September) from 2013 to 2018. Mortality data were classi-
fied according to the International Statistical Classification of
Disease, Tenth Revision (ICD-10), including all-cause (ICD-10
codes A00–Z99), nonaccidental (codes A00–R99), circulatory
disease (codes I00–I99), cardiovascular disease (codes I00–I59),
cerebrovascular disease (codes I60–I69), and respiratory disease
(codes J00–J99). We further considered nine cardiopulmonary
mortality categories: hypertensive heart disease (codes I10–I15),
acute myocardial infarction (codes I21–I22), myocardial infarc-
tion (codes I21–I23), chronic ischemic heart disease (code I25),
hemorrhagic stroke (codes I60–I61), cerebral stroke (codes I60–
I64), ischemic stroke (code I63), lower respiratory tract infection
(codes J12–J18 and J20–J22), and chronic obstructive pulmonary
disease (codes J41–J44). County-level daily mortality data for
these causes were also classified by sex (male and female) and
age (<65, 65–74, and >74 y).

Environmental Data
Hourly PM2:5 and O3 concentration data from 2013 to 2018 were
obtained from the National Urban Air Quality Real-Time Release
Platform. This platform, which includes 1,436 air pollutant moni-
toring stations nationwide, is established and maintained by the
China National Environmental Monitoring Centre. If a county
had more than one monitoring station, we calculated average air
pollution concentrations for all the stations of the county. If a
county had no station, we used air pollutant monitoring data from
the station closest to the centroid of the county. We calculated
the daily average 24-h concentration of PM2:5 and the daily maxi-
mum 8-h concentration for O3. PM2:5 was considered as a con-
founder in estimating the associations between extreme events
and mortality. In assessing the nationwide mortality burden from
2013 to 2020, we obtained O3 daily maximum 8-h average con-
centration data from 2013 to 2020 based on a multivariable ran-
dom forest model at a spatial resolution of 1× 1 km.23

Daily temperature and relative humidity data from 2013 to
2020 were obtained from the European Centre for Medium-
Range Weather Forecasts,24 with a resolution of 0:1� ×0:1�. We
extracted meteorological data based on the longitude and latitude
of each county’s centroid.

Definition of Extreme Events
We set the primary heatwaves definition as 2 consecutive days
exceeding the 98th percentiles of the county-specific daily mean
temperature for the summer season from 2013 to 2018. Similarly,
we primarily defined a high O3 pollution event as 2 consecutive
days with a daily maximum 8-h O3 concentration exceeding
160lg=m3, which is the secondary concentration limit of O3
based on the Ambient Air Quality Standard of China (CAAQS;
GB3095-2012). Then, we divided the identified heatwave days

Figure 1.Map of the locations of the 250 study counties in China. The dots
represent the sites of the 250 counties, and the zoomed-in panel represents
the South China Sea archipelago and boundary lines. The map data was
obtained from the Ministry of Natural Resources of the People’s Republic of
China [GS (2019) 1822] and created using ArcGIS (version 10.7; ESRI).
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and high O3 pollution days into three categories: a) days with
only heatwaves (heatwave-only event), b) days with only high O3
pollution (high O3 pollution-only event), and c) days with both
heatwaves and high O3 pollution (concurrent event); similar clas-
sification strategy has been used in one previous study.16 Days
when neither heatwaves nor high O3 pollution occurred were
defined as referent days.

Statistical Analysis
We estimated the association between extreme events (i.e.,
heatwave-only, high O3 pollution-only, and concurrent events)
and mortality via a two-stage approach, which has been widely
used in multicenter environmental epidemiological studies.11,25

In the first stage, we estimated mortality risk associated with
extreme events exposure for each county using a generalized lin-
ear model (GLM) with a quasi-Poisson regression, controlling for
the confounding effects of relative humidity, PM2:5, long-term
trends, and day of week. To investigate potential lagged effects,
we analyzed the mortality effect of an extreme event at a single-
day lag (i.e., lag 0, 1, 2, and 3). The model equation is as follows:

log ½EðYtÞ�=b0 + bXt + nsðRH, df Þ+ nsðPM2:5, df Þ
+ nsðTime, df Þ+Dow, (1)

where E(Yt) represents the expected number of deaths at day t; b0
is the model intercept; and Xt is a categorical variable denoting
event exposure on day t (Xt is “0” for referent days, “1” for days
with a heatwave-only event, “2” for days with a high O3
pollution-only event, and “3” for days with a concurrent event). β
is the coefficient vector with a length of three; ns is a natural
cubic spline function; df is the degrees of freedom of the natural
spline function; and RH is the mean relative humidity on day t,
included using natural cubic spline functions with three df per
year. PM2.5 is the daily average concentration of PM2:5 on day t,
included using natural cubic spline functions with three df per
year; Time is the long-term trends of mortality, with non-summer
days excluded, included using natural cubic spline functions with
three df per year; and Dow is a dummy variable indicating the
day of the week.

In the second stage, we conducted a random-effects meta-
analysis to estimate the overall mortality risk by pooling county-
specific results from the first stage for each lag effect. We calcu-
lated relative risks (RRs) and 95% confidence intervals (CIs).
Heterogeneity in county-specific results was evaluated as an I2

statistic. Using the pooled results from the meta-analysis, we cal-
culated relative excess risk due to interaction (RERI) to evaluate
whether the combined effect of the heatwaves and high O3 pollu-
tion is more or less than additive, which can provide scientific
evidence for public health management.18,26 RERI was estimated
only for the lag of overall mortality effect estimates for extreme
events, which was both the largest and statistically significant.16

We also conducted stratified analysis by sex (male and
female) and age (<65, 65–74, and >74 y) for the overall mortal-
ity risk of all-cause. We used the one-sided z-test (Equation 2) to
evaluate whether the difference in effect estimates between sub-
groups was statistically significant.16,27

z=
b1 − b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

1 + SE2
2

q , (2)

where b1 and b2 represent effect estimates for two subgroups
(e.g., male vs. female), and SE1 and SE2 represent the corre-
sponding standard errors. The z-test was used to compare the
pooled mortality risk associated with three extreme events.

We also performed a mixed-effects meta-regression to iden-
tify possible drivers of the heterogeneity in the pooled RR
between extreme events and all-cause mortality. We considered
county-level GDP (× 10,000), agricultural population (in per-
centage), low-income population (in percentage), proportion of
low-NDVI area (in percentage), proportion of population living
alone (in percentage), population >65 years of age (in percent-
age), illiterate population (in percentage), minority population (in
percentage), and population density (persons=km2).

With the pooled all-cause mortality risk from the meta-
analysis, we separately calculated the excess deaths attributable
to extreme events (i.e., heatwave-only, high O3 pollution-only,
and concurrent events) for each county from 2013 to 2020. In
addition, daily all-cause mortality counts for the whole year and
that on referent days (days of nonextreme events) were very close
(Figure S1); we used the annual daily mortality from the census
year 2010 to calculate excess death, given that daily mortality
data was unavailable for 2019 and 2020. The equation is as
follows27,28:

EDi,j =Pi × Ii × ðRR− 1Þ×Di,j, (3)

where EDi,j is the excess deaths attributable to extreme events for
county i in year j (i.e., j=2013, . . . 2020); Pi is the population for
county i, which is from the Sixth National Population Census in
2010; Ii is the expected daily mortality count on referent days,
estimated using the annual daily mortality count in 2010 for
county i, which is from the Sixth National Population Census; RR
is the pooled all-cause mortality risk associated with extreme
events (heatwave-only, high O3 pollution-only, and concurrent
events) estimated from the meta-analysis; and Di,j is the number
of days of extreme events (i.e., heatwave-only, high O3 pollution-
only, and concurrent events) for county i in year j.

Finally, we performed a series of sensitivity analyses to exam-
ine the robustness of the associations between extreme events and
all-cause mortality. First, we used different definitions for the heat-
waves and high O3 pollution days to estimate the overall mortality
risk of extreme events. Alternative thresholds based on different
percentiles (i.e., 95th, 97th, and 99th percentiles) were considered
in heatwaves definitions,10,11 and we also considered four alterna-
tive definitions of daily maximum 8-h O3 concentration: 1 d
exceeding 160lg=m3 and 2 consecutive days exceeding 100, 180,
and 200lg=m3, respectively. Second, we changed the df in the nat-
ural splines functions for time (df =2, 3, 4), relative humidity
(df =2, 3, 5), and PM2:5 (df =2, 3, 5) to estimate the mortality
risk of extreme events.

The map data was obtained from the Ministry of Natural
Resources of the People’s Republic of China [GS (2019) 1822]
and created using ArcGIS (version 10.7; ESRI). All analyses
were performed in R (version 3.6.3; R Development Core Team).
A p<0:05 was considered statistically significant in this study.

Results
During the summer periods from 2013 to 2018 in 250 Chinese
counties, the total death counts were 1,603,633, 1,484,975, 652,923,
325,012, 317,125, and 163,307 for all-cause, nonaccidental, cir-
culatory, cardiovascular, cerebrovascular, and respiratory mor-
tality, respectively (Table 1). The average daily maximum 8-h
concentrations of O3 and daily mean concentration of PM2:5 were
119:94 lg=m3 and 39:43 lg=m3, respectively, across all the study
counties in the summer from 2013 to 2018 (Table S1). The average of
daily mean summer temperatures across the study counties from
2013 to 2018 was 25.05°C. The average daily summer relative hu-
midity from 2013 to 2018 was 75%. In the summer periods of 250
counties from 2013 to 2018, the high O3 pollution-only event
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occurred in 26,601 d, the heatwave-only event in 5,191 d, and concur-
rent events in 3,252 d. Table S2 shows the descriptive statistics for the
county-level SES characteristics from the Sixth National Population
Census in 2010: The average GDP was 2,496,064.42 × 10,000, the
average proportion of the agricultural population in the total popula-
tion of this county was 0.34%, the average proportion of the popula-
tion with a monthly income of <2,000 CNYwas 0.03%, the average
proportion of areaswithNDVI<0:4was 12.52%, the average propor-
tion of the population living alone was 5.43%, the average proportion
of the population >65 years of agewas 9.95%, the average proportion
of the illiterate population was 3.87%, and the average proportion of
the minority population was 1.92%. The details of total death counts
for mortality due to all-cause, nonaccidental, circulatory disease, car-
diovascular disease, cerebrovascular disease, and respiratory disease
in extreme event days for 250 counties from 2013 to 2018 are shown
inExcel Table S1.

We estimated the pooled mortality risk at lag 0–3 d associated
with heatwave-only, highO3 pollution-only, and concurrent events
(Figure S2 and Table S3). Effects estimates were generally the
strongest at lag 1 (Table S3); we used the lag-1 estimates to calcu-
late the RERI, as discussed below. Figure 2 shows the pooled mor-
tality risk of the three extreme events at lag 1 d compared with
referent days. The concurrent events are consistently associated
with higher risk than the heatwave-only and high O3 pollution-
only events. The concurrent event was associated with elevated
risk for all-causemortality (RR=1:29; 95%CI: 1.25, 1.33), nonac-
cidental mortality (1.27; 95% CI: 1.23, 1.30), circulatory mortality
(1.39; 95%CI: 1.34, 1.45), cardiovascular mortality (1.43; 95%CI:
1.36, 1.51), cerebrovascular mortality (1.36; 95% CI: 1.30, 1.43),
and respiratory mortality (1.35; 95% CI: 1.27, 1.44). Concurrent
events were also associated with higher risk than heatwave-only
and high O3 pollution-only events for mortality due to some spe-
cific cardiopulmonary causes, including hypertensive heart dis-
ease, myocardial infarction, acute myocardial infarction, chronic
ischemic heart disease, ischemic stroke, and chronic obstructive
pulmonary disease. For example, the pooled RRs for ischemic
stroke mortality were 1.29 (95% CI: 1.23, 1.36), 1.20 (95% CI:
1.15, 1.25), and 1.02 (95% CI: 1.00, 1.04) associated with concur-
rent, heatwave-only, and high O3 pollution-only events, respec-
tively. Exposure to the heatwave-only event was associated with
increases in all-cause mortality (1.22; 95% CI: 1.19, 1.25), nonac-
cidental mortality (1.21; 95% CI: 1.18, 1.24), circulatory mortality
(1.32; 95%CI: 1.27, 1.36), cardiovascular mortality (1.35; 95%CI:
1.29, 1.41), cerebrovascular mortality (1.29; 95% CI: 1.24, 1.34),
and respiratorymortality (1.30; 95%CI: 1.23, 1.37).We also found
that exposure to the high O3 pollution-only event was significantly

associated with increases in all-cause mortality (1.02; 95% CI:
1.01, 1.03), nonaccidental mortality (1.02; 95%CI: 1.01, 1.03), cir-
culatory mortality (1.03; 95% CI: 1.01, 1.04), cardiovascular mor-
tality (1.03; 95% CI: 1.01, 1.04), cerebrovascular mortality (1.02;
95% CI: 1.01, 1.04), and respiratory mortality (1.02; 95% CI: 1.00,
1.04) at lag 1 d.

RERIs revealed additive effects under the primary definitions for
heatwaves (98th percentile) and high O3 pollution (>160 lg=m3) for
all the mortality outcomes; for example, the calculated RERIs
were 1.05 (95% CI: 1.01, 1.08), 1.05 (95% CI: 0.99, 1.11), and
1.03 (95% CI: 0.96, 1.11) for all-cause, circulatory, and respira-
tory mortality, respectively (Excel Table S2). Using these alter-
native definitions of extreme events, RERIs varied depending on
the extreme event definition. For example, when the heatwave
was defined as 2 consecutive days exceeding the 97th or 98th per-
centiles, the RERI was higher with more extreme O3 pollution
events for the two lenient thresholds (i.e., 100 and 160 lg=m3),
but lower with more extreme exposures for the other two strict
thresholds (i.e., 180 and 200 lg=m3). This pattern remained con-
sistent for all-cause, nonaccidental, and circulatory mortality.
Counterintuitively, we observed smaller RERI with more extreme
O3 pollution events, and negative RERIs when defining heatwaves
using the 99th percentile of themean temperature.

Table 2 shows the pooled all-cause mortality effect associated
with the three exposure events (concurrent events, heatwave-only
events, and high O3 pollution-only events) for sex and age groups.
According to the result of the z-tests, the estimated all-cause mortal-
ity risk associated with the concurrent and heatwave-only events
was statistically significant higher for males than females; for exam-
ple, concurrent event-associated pooled RRs were 1.36 (95% CI:
1.31, 1.42) and 1.24 (95% CI: 1.20, 1.27) for males and females,
respectively. The elderly group >74 years of age [RR=1:37 (95%
CI: 1.32, 1.43) for concurrent events, and RR=1:28 (95% CI: 1.24,
1.32) for heatwave-only events] had a higher risk for all-cause mor-
tality than the younger age group <65 years of age [RR=1:16 (95%
CI: 1.13, 1.20) for concurrent events, and RR=1:14 (95% CI: 1.12,
1.17) for heatwave-only events] for the concurrent and heatwave-
only events. All-cause mortality risk associated with high O3
pollution-only event did not differ statistically significant by age or
sex.

Results of the meta-regression analysis are shown in Table 3.
County-level characteristics, including the agricultural population
(1.095; 95% CI: 1.074, 1.117), low-income population (0.989;
95% CI: 0.979, 0.998), proportion of low-NDVI area (0.983; 95%
CI: 0.977, 0.989), illiterate population (1.107; 95% CI: 1.089,
1.125), minority population (0.985; 95% CI: 0.980, 0.991), and

Table 1.Mortality in 250 Chinese counties in the summer from 2013 to 2018.

Cause ICD-10 codes Total (N) Mean SD Min Median Max

All-cause A00–Z99 1,603,633 11 7 0 9 139
Nonaccidental cause A00–R99 1,484,975 10 7 0 8 134
Circulatory disease I00–I99 652,923 5 4 0 4 83
Cardiovascular disease I00–I59 325,012 2 2 0 2 60
Cerebrovascular disease I60–I69 317,125 2 2 0 2 65
Respiratory disease J00–J99 163,307 1 1 0 1 33
Hypertensive heart disease I10–I15 44,881 0 1 0 0 16
Acute myocardial infarction I21–I22 139,303 1 1 0 1 18
Myocardial infarction I21–I23 139,358 1 1 0 1 18
Chronic ischemic heart disease I25 113,446 1 1 0 1 52
Hemorrhagic stroke I60–I61 103,587 1 1 0 1 45
Cerebral stroke I60–I64 95,630 1 1 0 1 45
Ischemic stroke I63 108,009 1 1 0 1 19
Lower respiratory tract infection J12–J18 and J20–J22 39,651 0 1 0 0 12
Chronic obstructive pulmonary disease J41–J44 105,041 1 1 0 0 32

Note: Numbers shown in the table are total death counts in all counties (total), and summary statistics of daily death counts across all the counties, including the mean, standard devia-
tion (SD), minimum (min), median, and maximum (max) of daily death counts. ICD-10, International Statistical Classification of Disease Version 10.
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proportion of population >65 years of age (1.123; 95% CI:
1.112, 1.134), significantly impacted the association between
concurrent events and all-cause mortality. The agricultural pop-
ulation (1.106; 95% CI: 1.088, 1.125), low-income population
(1.014; 95% CI: 1.004, 1.024), proportion of low-NDVI area
(0.979; 95% CI: 0.974, 0.984), proportion of population living

alone (0.911; 95% CI: 0.900, 0.922), illiterate population
(1.090; 95% CI: 1.075, 1.104), minority population (0.988; 95%
CI: 0.983, 0.993), and proportion of population >65 years of
age (1.072; 95% CI: 1.061, 1.083), significantly impacted the
association between a heatwave-only event exposure and all-
cause mortality (p<0:05). The proportion of the population

Figure 2. Pooled mortality risk at lag 1 for the concurrent, heatwave-only, and high O3 pollution-only events, compared with referent days of 250 Chinese
counties in the summer from 2013 to 2018. Pooled mortality risk was estimated by meta-analysis, and mortality risk for each county was estimated using a
GLM model, controlling for the confounding effects of relative humidity, PM2:5, long-term trends, and day of week. I2 shows heterogeneity in the pooled effect
estimates for each extreme event. p-Values show statistical significance of the z-test comparing the pooled RRs for heatwave-only and high O3 pollution-only
events with the concurrent events (referent event). Note: GLM, generalized linear model; O3, ozone; PM2:5, particulate matter ≤2:5 lm in aerodynamic diame-
ter; ref, reference; RERI, relative excess risk due to interaction.
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>65 years of age (1.006; 95% CI: 1.003, 1.008) significantly
impacted the association between a high O3 pollution-only
event and all-cause mortality.

The annual average days of the concurrent events from 2017
to 2020 were more than those from 2013 to 2016. For 1,028
Chinese counties, the concurrent events occurred in 3,718 d in
2017 and 3,450 d in 2019 (Figure S3). From 2013 to 2020, the
proportion of the days of each extreme event to the total days
of the three events varied greatly (Figure 3; Table S4). The
heatwave-only event (9,006 d, the proportion was 80.35%)
accounted for most of the total days (11,208 d) of extreme events
in 2013; by contrast, the high O3 pollution event (20,341 d,
90.51%) accounted for most of the total days (22,475 d) in 2020.
The concurrent events (3,718 d, 14.36%) accounted for <20% of
the total days (25,886 d) of extreme events, with the highest
observed in 2017.

Based on the estimation of excess deaths using the exposure–
response relationship coefficient from 2013 to 2018, we obtained
the annual excess deaths from 2013 to 2020 for heatwave-only,
high O3 pollution-only, and concurrent events (Figure S4 and
Table S5). Because there was a noticeable increase in excess
deaths attributable to concurrent events in 2017, we divided the
entire study period into two periods (i.e., 2013–2016 and 2017–
2020). From 2017 to 2020, the estimated annual average excess
deaths attributed to concurrent events in China was 6,249 (8,966,
5,176, 8,668, and 2,185 excess deaths in 2017, 2018, 2019, and
2020, respectively), 5.7 times higher than the annual average
excess deaths (934 deaths) attributed to concurrent events from
2013 to 2016 (872, 384, 1,449, and 1,029 excess deaths in 2013,
2014, 2015, and 2016, respectively). In 2013, the excess deaths
attributed to heatwave-only events (20,999 deaths) accounted for
94.25% of the total excess deaths (22,279 deaths) attributable to
the three extreme events, whereas excess deaths attributed to
concurrent events (872 deaths) accounted for 3.91% (Figure 4;
Table S5). However, the numbers of excess deaths attributed to
the concurrent, heatwave-only, and high O3 pollution-only
events were nearly identical in 2020. Furthermore, from 2017
to 2020, the annual average proportion of the concurrent event

Table 2. Pooled all-cause mortality risk associated with extreme events
exposure in 250 Chinese counties for sex and age groups in the summer
from 2013 to 2018.

Sub group N Pooled RR (95% CI) I2 (%) z-Test p-value

Sex
Concurrent event
Male 21,326 1.36 (1.31, 1.42) 75.53 Ref
Female 18,485 1.24 (1.20, 1.27) 62.45 <0:001

Heatwave-only event
Male 29,078 1.29 (1.25, 1.33) 69.69 Ref
Female 24,229 1.18 (1.16, 1.21) 59.43 <0:001

High O3 pollution-only event
Male 148,080 1.03 (1.02, 1.04) 17.74 Ref
Female 112,804 1.02 (1.01, 1.03) 10.34 0.116

Age (y)
Concurrent event
<65 8,638 1.16 (1.13, 1.20) 18.51 Ref
65–74 7,479 1.22 (1.18, 1.26) 36.02 0.024
>74 23,694 1.37 (1.32, 1.43) 80.64 <0:001

Heatwave-only event
<65 13,113 1.14 (1.12, 1.17) 26.92 Ref
65–74 10,180 1.17 (1.14, 1.21) 28.77 0.103
>74 30,013 1.28 (1.24, 1.32) 76.00 <0:001

High O3 pollution-only event
<65 65,377 1.02 (1.00, 1.03) 2.40 Ref
65–74 52,537 1.02 (1.01, 1.03) 0.02 0.214
>74 142,971 1.03 (1.02, 1.04) 27.52 0.084

Note: N represents the all-cause mortality of each subgroup for each extreme event. The
pooled RRs are all-cause mortality risk associated with heatwave-only, high O3 pollution-
only, and concurrent events at lag 1 d, compared with referent days of 250 counties in the
summer from 2013 to 2018, by GLM and meta-analysis, adjusting for relative humidity,
PM2:5, long-term trends, and day of week. The I2 shows heterogeneity in the pooled esti-
mates for each extreme event in sex and age groups. The z-test p-value shows statistical
significance when comparing the pooled RR in sex and age groups. CI, confidence inter-
val; GLM, generalized linear model; O3, ozone; Ref, reference; RR, relative risk.

Table 3. Estimates from meta-regression for the associations between pooled all-cause mortality risk and county-level socioeconomic (SES) characteristics for
per IQR of 250 Chinese counties in the summer from 2013 to 2018.

SES variables IQR RR (95% CI) I2 (%) p-Value

Concurrent event (3,252 d)
GDP ( × 10,000) 2,199,106 1.030 (1.020, 1.039) 76.92 <0:001
Agricultural population (%) 0.44 1.095 (1.074, 1.117) 75.87 <0:001
Low-income population (%) 0.03 0.989 (0.979, 0.998) 77.22 0.024
Low-NDVI areas (%) 13.96 0.983 (0.977, 0.989) 76.65 <0:001
Population living alone (%) 3.33 0.987 (0.973, 1.001) 77.17 0.076
Illiterate population (%) 3.96 1.107 (1.089, 1.125) 74.73 <0:001
Minority population (%) 1.84 0.985 (0.980, 0.991) 76.81 <0:001
Population >65 years of age (%) 2.84 1.123 (1.112, 1.134) 68.97 <0:001
Heatwave-only event (5,765 d)
GDP ( × 10,000) 2,199,106 0.996 (0.987, 1.005) 77.09 0.353
Agricultural population (%) 0.44 1.106 (1.088, 1.125) 75.02 <0:001
Low-income population (%) 0.03 1.014 (1.004, 1.024) 76.91 0.004
Low-NDVI areas (%) 13.96 0.979 (0.974, 0.984) 76.14 <0:001
Population living alone (%) 3.33 0.911 (0.900, 0.922) 74.07 <0:001
Illiterate population (%) 3.96 1.090 (1.075, 1.104) 74.85 <0:001
Minority population (%) 1.84 0.988 (0.983, 0.993) 76.76 <0:001
Population >65 years of age (%) 2.84 1.072 (1.061, 1.083) 74.68 <0:001
High O3 pollution-only event (26,601 d)
GDP ( × 10,000) 2,199,106 1.000 (0.999, 1.001) 10.83 0.049
Agricultural population (%) 0.44 1.002 (0.998, 1.007) 10.55 0.299
Low-income population (%) 0.03 1.000 (0.997, 1.003) 10.54 0.922
Low-NDVI areas (%) 13.96 0.999 (0.998, 1.001) 10.49 0.306
Population living alone (%) 3.33 1.001 (0.998, 1.004) 10.64 0.528
Illiterate population (%) 3.96 1.001 (0.997, 1.005) 10.51 0.643
Minority population (%) 1.84 1.000 (0.998, 1.002) 10.54 0.906
Population >65 years of age (%) 2.84 1.006 (1.003, 1.008) 10.32 <0:001

Note: Estimates were calculated per IQR change in county-level SES characteristics. All these data were from the Sixth National Population Census in 2010. CI, confidence interval;
GDP, counties’ gross domestic product; low-income population, proportion of population with monthly income of <2,000 CNY; IQR, interquartile range; low-NDVI area, the propor-
tion of the area with an NDVI of <0:4; NDVI, normalized difference vegetation index; O3, ozone; RR, relative risk; SES, socioeconomic status.
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attributable excess deaths to the total excess deaths attributed to
three events was 31.50% (95% CI: 26.73%, 35.53%), whereas
this proportion was 9.65% (95% CI: 5.67%, 10.81%) from 2013
to 2016.

Under the alternative definition of the concurrent events as
mean temperature exceeding the 98th percentile and O3 exceed-
ing 160lg=m3 for 1 d, the estimated mortality risk was lower
than the estimates under our primary definition of the concurrent
events (Excel Table S2). In addition, the results of other alterna-
tive definitions are shown in Table S4. Under our primary defini-
tion of the high O3 pollution event (2 consecutive days exceeding
160lg=m3), concurrent events-associated all-cause mortality
risk increased with more extreme heatwave exposures. Under our
primary definition of the heatwaves events (2 consecutive days
exceeding the 98th percentile of average temperature), the con-
current events-associated mortality risk was highest when the
high O3 pollution event was defined using the threshold of
160lg=m3. Sensitivity analysis results using different degrees of
freedom in spline functions were generally consistent with our
primary findings (Table S6).

Discussion
This study explored the mortality risk associated with the concur-
rent heatwaves and high O3 pollution events, and it estimated

the excess deaths by nationwide temperature and O3 exposure
and mortality data in China. The results indicated a higher risk
of mortality across China in association with exposure to the
concurrent, heatwave-only, and high O3 pollution-only events.
Mortality risk associated with the concurrent event was more pro-
nounced than the risk of heatwave-only and high O3 pollution-
only events for circulatory, cardiovascular, cerebrovascular, and
respiratory mortality. RERI revealed additive interaction for com-
bining heatwaves and high O3 pollution events under certain defi-
nitions of extreme events. We estimated that the annual average
excess deaths attributed to a concurrent event was 6,249 in China
from 2017 to 2020, 5.7 times higher than the annual average
excess deaths attributed to a concurrent event from 2013 to 2016.
The mortality risks of a concurrent event in males and elderly
people >74 years of age were higher. Our results imply that more
attention should be paid to the adaptability to respond to concur-
rent extreme events in the context of climate change, especially
for vulnerable populations.

Although it is well established that heatwaves and high O3 pol-
lution individually have acute effects on mortality,7–11 little is
known regarding the effects of the concurrent events on mortality.
We found that the mortality risk was much higher with the concur-
rent events than for the heatwave-only and high O3 pollution-only
events. Similarly, one study reported joint exposure effects of O3

Figure 4. The proportion of attributable excess deaths attributed to each event to the total excess deaths attributed to three extreme events in summer from
2013 to 2020 in China. The details for the attributable excess deaths (number of days and proportion) are shown in Table S5.

Figure 3. The proportion of frequency (number of days) of each event to the total days of heatwave-only, high O3 pollution-only, and concurrent events in
summer from 2013 to 2020 in China. The details for the frequency (number of days and proportion) are shown in Table S4. Note: O3, ozone.
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and heatwaves in California.18 However, evidence has yet to be
derived from developing countries, where O3 pollution is typically
more severe than in developed countries. Furthermore, recent epi-
demiological studies have reported an interaction effect of temper-
ature and O3 on mortality.12–14,29,30 For example, a European
study showed that the mortality risk of O3 differed depending on
temperature, with a per-10 lg=m3 increase of O3 associated with
an increased mortality risk of 0.17% (95 CI%: −0:14%, 0.49%),
0.24% (95 CI%: −0:08%, 0.57%), and 0.67% (95 CI%: 0.36%,
0.98%) at low (<25th percentile), medium (25th–75th percentile),
and high (>75th percentile) temperatures, respectively.29 Another
study consistently found that themortality risk of O3 was enhanced
at higher temperatures in 128 Chinese counties.14 Our findings
align with those results to some extent, with concurrent events
associated with a greater mortality risk than heatwave-only and
highO3 pollution-only events.

Previous studies have reported that heatwaves and O3 exposures
are associated with increased mortality risk.10,11,31–34 For example,
heatwaves were associated with a 15.7% (95% CI: 12.5%, 18.9%)
increase in the risk of nonaccidental mortality in 130 Chinese coun-
ties.11 Our study found a similar effect of heatwave-only events on
nonaccidental mortality, with an estimated RR of 1.21 (95% CI:
1.19%, 1.24%) at lag 1 d. Consistent with previous findings,35–37 our
results indicated that heatwave-only events substantially impacted
circulatorymortalitymore than all-causemortality. The pronounced
impact of heatwaves on circulatory mortality is possibly due to
increased blood flow and blood pressure caused by high tempera-
tures, leading to a decreased oxygen supply and an increased risk of
mortality from cardiovascular diseases.37 In addition, high O3
pollution-only events were significantly associated with increased
mortality risk in this study, which aligns with previous relevant find-
ings.9,33,38,39 A study of 95 US urban communities found that mor-
tality risk increased by 0.52% (95% CI: 0.27%, 0.77%) per 10-ppb
increase in O3 concentration.38 A study of 272 Chinese cities
reported that a per-10lg=m3 increase in O3 was associated with a
0.24% (95% CI: 0.13%, 0.35%) increase in daily all-cause mortal-
ity.9 We also found the association of high O3 pollution-only events
with circulatory was higher than all-cause mortality, consistent with
previous studies.9,34

We also observed that concurrent events were associated with a
higher risk for the cardiopulmonary mortality than all-cause mortal-
ity, suggesting that individuals with cardiopulmonary disease might
be particularly susceptible to concurrent events. A study conducted
in California also observed the associations between all-cause, car-
diovascular, and respiratory diseases and co-occurring extreme heat
and particulate air pollution, which is consistent with our findings.16

Individuals with cardiopulmonary diseasesmay bemore susceptible
to the concurrent events as a result of the increased load on the circu-
lation system required to maintain a typical body temperature.40 O3
may directly affect the respiratory tract through inhalation and affect
the autonomic nervous system regulation, thus increasing people’s
susceptibility to temperature variability.41

The RERI results for different definitions of O3 and heat
extreme events highlight the importance of heatwave limits within
the additive effect for concurrent events. However, the estimated
RERIs varied depending on the extreme event definitions, with
negative values in some cases. The varying RERIs may suggest
potential spatial heterogeneity,18 given that we also found that
county-level characteristics significantly impact the pooledmortal-
ity risk of extreme events. Thus, further studies can be conducted
to explore the spatial variation of RERIs in China. In addition, the
estimated RERIs were negative under the strictest definition of the
heatwaves (99th percentile), which seems inconsistent with a pre-
vious study in California examining the additive effects of expo-
sure to heatwaves and PM2:5.16 Using different definitions for the

extreme eventsmay help to account for the inconsistency; although
the study in California used percentile-based relative definitions
for both the heatwaves and the air pollution events, we used the
absolute definition for air pollution events. We speculate that we
should focus more on extreme concurrent event exposures under
certain thresholds (i.e., 98th percentile and 160lg=m3). When
more extreme temperature or O3 pollution events occur, the impact
of concurrent events may be weakened and the health impact of a
single event is extremely strong.

In this study, we observed a highermortality risk associatedwith
the concurrent event for males than for females. Few studies have
explored the sex and age differences in the mortality risk for a con-
current event; however, previous studies of heatwaves in China gen-
erally reported the opposite results, with females more vulnerable
than males.42,43 Sex differences in the mortality risk associated with
extreme events may be due to differences in social and living condi-
tions and occupational exposures.44–46 For example, men are more
likely to engage in occupational work and outdoor activities under
high-temperature conditions, which may explain why the RR for
males is higher than that for females in concurrent events and
heatwave-only events.45 Moreover, we found that elderly people
>74 years of age were more vulnerable to the heatwave-only and
concurrent events than younger people <65 years of age, which is
consistent with previous findings in China, Europe, and the United
States.14,29–31,37 Elderly people >65 years of age often have chronic
cardiopulmonary diseases and poor immune function, making
them more vulnerable to extreme events.47–49 Through the meta-
regression analysis, we found that county-level characteristics (e.g.,
GDP and the proportion of the agricultural population may impact
the association between extreme events and all-cause mortality). As
a result of the urban heat island effect, areas with a higher GDPmay
also have a higher heat vulnerability.49,50 Farmworkers are often
occupationally exposed to heat stress and are, therefore, more sus-
ceptible to heat stress than the general public.51–53

This study has several limitations. First, there may be exposure
measurement errors.Weused ambient air pollution and temperature
to define exposure, which may have introduced measurement errors
because we could not determine the indoor air pollution level; how-
ever, people spend ∼ 90% of the time indoors.53,54 However, con-
current events are usually affected by outdoor exposure. Second,
adaptive behaviors are different among populations from different
regions. Residents living in hot areas may bemore adaptable to heat
and less likely to exhibit adverse symptoms of health effects, which
might have led to the underestimation of the effects thereof.54 Third,
residual confounding is possible in the estimated results because we
did not control for other potential confounders, such as the air-
conditioning utilization rate. Finally, uncertainty may exist in
assessing excess deaths attributable to extreme events for 2013–
2020, given that the influence of the COVID-19 pandemic (which
started in 2019) was not considered,55,56 and the mortality risk was
estimated using data from2013 to 2018.

One strength of this study is its large sample size. This nation-
wide analysis included >1:1million deaths and multiple specific
causes of diseases, providing a comprehensive assessment explor-
ing themortality risk associated with the concurrent heatwaves and
highO3 pollution event.

In summary, our study provided novel evidence on the increas-
ing mortality risk and burden of concurrent heatwaves and high O3
pollution events. We speculate that the frequency and excess
deaths attributed to concurrent events have increased slightly over
time. Our findings contribute to scientific evidence supporting the
necessity and importance of establishing an early warning system
for concurrent events, more attention should be paid to the early
warning classification of high O3 pollution when continuous heat-
waves are expected.
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