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ABSTRACT
Introduction In Kuwait, a severe diabetes and obesity 
epidemic coexists with intense dust storms and harsh 
summer heat. While, theoretically, this interplay between 
dust, heat, and diabetes presents a serious public health 
problem, the empirical understanding of the actual risks 
remains limited. We hypothesized that increased exposure 
to heat and dust, independently and jointly, exacerbates 
the risk of hospitalization for diabetes patients.
Research design and methods We placed custom- 
designed particle samplers in Kuwait to collect daily 
dust samples for 2 years from 2017 to 2019. Samples 
were analyzed for elemental concentrations to identify 
and quantify dust pollution days. Temperature data were 
collected from meteorological stations. We then collected 
hospitalization data for unplanned diabetic admissions in 
all public hospitals in Kuwait. We used a case- crossover 
study design and conditional quasi- Poisson models to 
compare hospitalization days to control days within the 
same subject. Finally, we fitted generalized additive models 
to explore the smoothed interaction between temperature 
and dust days on diabetes hospitalization.
Results There were 11 155 unplanned diabetes 
hospitalizations over the study period. We found that each 
year, there was an excess of 282 diabetic admissions 
attributed to hot days (95% CI: −14 to 473). Additionally, 
for every 10 µg/m3 increase in dust levels, there were 
about 114 excess diabetic admissions annually (95% CI: 
11 to 219). Compared with mild non- dusty days (33°C (0 
µg/m3)), hot–dusty days jointly increased the relative risk 
of diabetic admissions from 1.11 at 42°C (85 µg/m3) to 
1.36 at 42°C (150 µg/m3).
Conclusions Both heat and dust seem to contribute to 
the increased diabetes morbidity, with combined hot–dusty 
conditions exacerbating these risks even further.

INTRODUCTION
In the harsh desert environment of Kuwait, 
there is (1) an alarming diabetes and obesity 
epidemic, (2) dramatic dust storms and dust 
haze that frequently blanket the country year- 
round, and (3) extremely hot summers with 
record- breaking temperatures. The simul-
taneous interplay between two major envi-
ronmental phenomena and a public health 
epidemic in Kuwait provides a unique window 
to study the effects of the environment on 
diabetes.

The Kuwait Diabetes Epidemiology Program 
reported a diabetes prevalence among adults 
at 19.1%, significantly higher than the global 
average of 9%, with a staggering 64.8% preva-
lence in individuals over 60 years.1 2 Addition-
ally, 74% of the adult population are either 
overweight or obese.3 4 Diabetes medications 
alone accounted for 22.8% of the nation’s 
drug expenditures in 2018, roughly US$218 
million.5

Within the same context, the country faces 
the harshest extreme weather events. Every 
year, more than 270 tons of dust are depos-
ited in every kilometer square in Kuwait.6 In 
the southern part of the country, air pollution 
from fine particulate matter (PM2.5; particu-
late matter with aerodynamic diameter less 
than 2.5 microns) exceeded the daily WHO 
limits in almost 90% of the days.7 Meanwhile, 
summer temperatures frequently surpass 
50°C, with a record high of 54°C in 2016.8 9 
These unprecedented hot temperatures are 
expected to escalate with the progression of 
climate change.10

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ There is a high prevalence of diabetes and obesity in 
Kuwait, accompanied by severe environmental con-
ditions such as extreme heat and dust storms, which 
are theorized to exacerbate health complications in 
diabetics.

WHAT THIS STUDY ADDS
 ⇒ This study provides empirical evidence that both 
extreme heat and dust storms independently and 
jointly increase hospitalization rates for diabetic pa-
tients in Kuwait.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ This study points to healthcare systems who should 
start to integrate environmental risk factors into clin-
ical practices and policies, ensuring preparedness 
for the compounded health impacts of extreme cli-
mate conditions on vulnerable populations, such as 
diabetics.

B
M

J O
pen D

iabetes R
esearch &

 C
are: first published as 10.1136/bm

jdrc-2024-004320 on 29 A
ugust 2024. D

ow
nloaded from

 https://drc.bm
j.com

 on 17 M
arch 2025 by guest.

P
rotected by copyright, including for uses related to text and data m

ining, A
I training, and sim

ilar technologies.

http://drc.bmj.com/
http://orcid.org/0000-0002-9523-9537
https://doi.org/10.1136/bmjdrc-2024-004320
https://doi.org/10.1136/bmjdrc-2024-004320
https://doi.org/10.1136/bmjdrc-2024-004320
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjdrc-2024-004320&domain=pdf&date_stamp=2024-08-29


2 BMJ Open Diab Res Care 2024;12:e004320. doi:10.1136/bmjdrc-2024-004320

Epidemiology/Health services research

Diabetic patients are thought to be vulnerable to air 
pollution and extreme heat.11–15 The increased heat 
sensitivity in diabetics can be attributed to impaired 
sweat production, reduced blood flow to the skin, and 
diabetic peripheral neuropathy, which together impair 
heat dissipation and temperature regulation.16 Further-
more, fine dust particles can induce endothelial damage 
and oxidative stress, exacerbating vascular complications 
and systemic inflammation, thus worsening diabetic 
outcomes.17 18 While, theoretically, this interplay between 
dust, heat, and diabetes presents a serious public health 
crisis, the empirical understanding of the actual risks 
remains limited. We leveraged the presence of amplified 
exposures and the high proportion of diabetics to collect 
data on temperature, dust, and hospital admissions 
throughout Kuwait. The aim was to investigate the short- 
term impact of hot and dusty days on the acute hospital-
ization admission rates of individuals with diabetes. We 
hypothesized that increased exposure to heat and dust, 
independently and jointly, exacerbates the risk of hospi-
talization for diabetes patients.

METHODS
Dust data
For the period from October 2017 to October 2019, we 
placed particle samplers at two locations in Kuwait to 
collect daily samples of PM2.5 (in µg/m3). These samplers 
were custom designed at the Harvard T.H. Chan School 
of Public Health (known as ‘Harvard Impactor’).19 They 
were made capable of collecting large quantities of parti-
cles during dust storms using a polyurethane foam impac-
tion substrate to efficiently collect particles above specific 
size thresholds, proving to be very accurate and precise 
in the challenging desert environment (figure 1).7 20 21 
Daily collected samples were then shipped to Boston, 
Massachusetts, for speciated analysis of elemental 
concentrations. Trace elements were detected using 
Energy Dispersive X- Ray Fluorescence. Quality assurance 
measures and protocols were developed by the Harvard 

T.H. Chan School of Public Health, ensuring reliable 
data collection and analysis as outlined in Alahmad et al.7

Speciation data (elemental concentrations) for each 
day during the sampling period were fitted in positive 
matrix factorization models.22 These models discern 
‘source factors’ based on statistical correlations and vari-
ations in the data, effectively separating and identifying 
distinct pollution sources by their unique compositional 
profiles. To single out the dust pollution (as opposed to 
traffic or fossil fuel burning pollution), we relied on the 
presence of high loadings from fingerprint crustal and 
geological elements (eg, Mg, Al, Si, Ca, Ti, and Fe).23 24 
Correlation between measured fingerprint elements and 
the sourced overall dust concentration is shown in online 
supplemental figure S1. In this analysis, for each day, we 
calculate the average from the two locations to get the 
daily observed dust- sourced PM2.5 (in µg/m3).25 This is 
referred to as ‘dust’ onwards.

Temperature data
Daily temperature (in °C) data were obtained from 
Kuwait International Airport from the Meteorological 
Department of the Directorate General of Civil Aviation 
in Kuwait. Airport data is known for its comprehensive 
record of hourly weather data extending back to the 
1960s. Additionally, the Kuwait Environmental Public 
Authority conducts regular monitoring of meteorological 
indicators, including 24- hour daily average temperatures 
and relative humidity, gathered from 15 meteorological 
stations across urban areas in Kuwait. We selected the 
Airport data for this analysis due to its completeness 
and the lack of significant heterogeneity across the small 
geographic distribution of urban areas.26

Hospitalization data
The Ministry of Health keeps records of discharge forms 
(that subsequently get digitized) for every hospitaliza-
tion. We obtained all ‘non- planned’ hospital admissions 
for diabetes mellitus from 14 public hospitals in Kuwait 
(7 general hospitals and 7 peripheral/tertiary hospi-
tals). The data was available by the admission date and 
discharge diagnosis classified by the International Classi-
fication of Diseases 10 revision. We analyzed all admitted 
patients for diabetes mellitus causes (E10–E14), which 
includes type 1, type 2, and unspecified. The data struc-
ture did not enable us to detect multiple hospitaliza-
tions by the same individual. The admissions data were 
available from 1 January 2010 to 31 December 2020. We 
excluded the year 2020 because of the COVID- 19 disrup-
tion to healthcare access.

Study design
We used a case- crossover design where each subject serves 
as their own control. This extension of the conventional 
case–control studies allows for a comparison within the 
same subject and, therefore, eliminates confounding at 
the individual level (eg, by age, sex, body mass index, 
smoking, etc).27 We compared temperature and dust 

Figure 1 Dust collection process showing (A) a sampling 
location in Kuwait, (B) custom- designed Harvard Impactors, 
and (C) the acceleration jet and polyurethane foam that 
can enable accurate dust collection (the arrow shows a 
large amount of accumulated dust in the rectangular yellow 
surface).
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concentrations during the day of hospitalization (case) to 
other days of the same day of the week (effectively 1 week 
apart) within the same month and the same year when 
the same individual was not hospitalized (self- control).

Statistical analysis
We fitted a conditional quasi- Poisson model with elimi-
nated strata of a three- way interaction between day of the 
week, month, and year. The conditional Poisson models 
are efficient alternatives to conditional logistic models.28 
Model specification is presented in online supplemental 
methods.

To estimate the effects of heat, we restricted the anal-
ysis to the hottest three summer months (June, July, and 
August) from 2010 to 2019. Temperature was fitted using 
distributed lag non- linear models (DLNM) that simulta-
neously model the temperature and lag dimensions.29 
We used a short lag of 7 days with two natural spline 
knots placed equally on the log scale. Temperature was 
modeled with two natural spline knots placed at the 50th 
and 90th percentiles. The relative risk of diabetes hospi-
talization was calculated by comparing hot summer days 
to the lowest summer temperature day (33°C, rounded to 
the whole number). We summed up the contribution of 
each summer day using Gasparrini and Leone extension 
to calculate attributable risk.30

When estimating the effects of dusty days, we used all 
months from 2017 to 2019. Using penalized splines,31 
we did not find evidence of non- linearity in the dust and 
hospitalization dose–response relationship. Dust was 

then fitted linearly in models adjusted for temperature, 
relative humidity, and anthropogenic- source pollution 
(regional PM2.5). We used a 7- day moving average to 
account for the lag effect. The relative risk of diabetes 
hospitalization was reported for every 10 µg/m3 increase 
in dust level. The attributable risk was calculated by 
multiplying the risk fraction by the total diabetes admis-
sions per year.

We then used a generalized additive model to fit an 
interaction penalized spline31 for two continuous vari-
ables: 7- day moving average of temperature and dust. 
From the resulting smoothed three- dimensional relation-
ship (dust–temperature–diabetes), we obtained predic-
tions at three dust scenarios: no dust (0 µg/m3), high 
dust (85 µg/m3), and very high dust day (150 µg/m3), 
and used them to calculate the relative risk of diabetic 
hospitalization from summer hot days.

All analyses were done using R software (V.4.2.1) and 
the DLNM, MGCV, and Plotly packages.

RESULTS
The total number of unplanned hospital admissions for 
diabetes mellitus was 11 155 all year long from 2017 to 
2019 (table 1 and online supplemental table S1). For the 
summer months (June to August) from 2010 to 2019, 

Table 1 Descriptive analysis of the study population and 
the environmental exposures

Summers only*
(2010–2019)

Year long†
(2017–2019)

Diabetes mellitus admissions, n (average per day)

  Total 8960 (9.7) 11 155 (10.0)

  Male 4618 (5.0) 5814 (5.3)

  Female 4342 (4.7) 5341 (4.9)

  Elderly (65+ 
years)

1804 (2.1) 1687 (1.7)

Diabetes type, n

  Type 1 1730 (1.9) 1950 (1.8)

  Type 2 288 (0.3) 350 (0.3)

  Unspecified 6942 (7.5) 8855 (8.1)

Environmental factors, mean±SD (min, max)

  Temperature 
(°C)

39.1±1.9 (33.2, 44.0) 27.9±9.7 (7.0, 43.6)

  Relative 
humidity (%)

16.5±9.5 (6.3, 65.9) 37.8±20.5 (9.1, 92.4)

  Dust (µg/m3) 23.8±29.5 (1.7, 189.1) 17.3±26.7 (0, 290.4)

*Summers include the hottest 3 months of the year (June, July, 
and August); used for the heat analysis.
†Dust sampling took place from 2017 to 2019; used for the dust 
and heat–dust interaction analyses.

Figure 2 Dose–response relationship showing the relative 
risk of diabetes hospital admissions for (A) summer heat and 
(B) dust in Kuwait.
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there were a total of 8960 hospital admissions. Distribu-
tion of admissions across the years is presented in online 
supplemental figure S2.

During the summer months, the average temperature 
was at 39.1°C (27.9°C for the year- long period), with a 
considerably narrower SD in summer, indicating less vari-
ation and a hot prolonged period (table 1). The climate 
was also characterized by dry heat with average relative 
humidity during summers as low as 16.5% (± 9.5%). Dust 
concentration averaged at 23.8 µg/m3 during summers. 
The year- long average of dust concentrations in Kuwait 
was 17.3 µg/m3 (± 26.7 µg/m3), although with a broader 
range from no dust days (0 µg/m3) to severe dust storms 
(290.4 µg/m3).

Figure 2 represents the dose–response relationships 
for heat and dust (independently) and the relative risk 
of diabetes hospitalization in Kuwait during the study 
period. For dust particles, the relationship shows a linear 
increase in risk as dust concentration rises. For every 10 
micrograms per cubic meter increase in dust, the risk 
of hospitalization for diabetes increased by 3% (relative 
risk=1.03, 95% CI: 1.00 to 1.06) translating into about 114 
excess diabetic admissions annually (95% CI: 11 to 219) 
(table 2).

For the heat in summer months, the curve demon-
strates a non- linear relationship where the relative risk 
increases substantially as temperatures rise from the 
summer minimum of 33°C, reaching a peak at around 
38°C, then fluctuates and shows another smaller peak 
around 43°C (figure 2). Compared with the 33°C as a 
reference, the relative risk of hospitalization at 34°C was 
1.11 (95% CI: 1.01 to 1.23); at 35°C was 1.26 (95% CI: 
1.02 to 1.57); and this risk continued to increase, peaking 
at 38°C with a relative risk of 1.58 (95% CI: 1.03 to 2.42) 

(table 2). We found that each year, there were an excess 
of about 282 diabetic admissions attributed to hot days 
that were above 33°C (95% CI: −14 to 473). We observed 
almost a similar pattern among subgroups such as males 
versus females (p value=0.14) (table 2).

In three- dimensional smoothing, the temperature 
slope at extreme dust is less pronounced compared with 
the dust slope at extreme temperatures (online supple-
mental figure S3). In interaction analysis (table 3), 
compared with mild temperature non- dusty days (33°C 
(0 µg/m3)), hot–dusty days jointly increased the relative 
risk of diabetic admissions from 1.11 (95% CI: 0.85 to 
1.45) at 42°C (85 µg/m3) to 1.36 (0.70 to 2.62) at 42°C 
(150 µg/m3). These findings of compounded risk of 
combined exposures warrant cautious interpretation, 
given the lack of precision in interaction models.

DISCUSSION
Kuwait’s extreme climate, being one of the hottest and 
dustiest environments globally, offers a unique natural 
laboratory to study the impacts of hot and dusty days on 
the incidence and management of an existing epidemic 
of diabetic patients. Our findings show that, in Kuwait, 
both heat and dust contribute to increased diabetes 
hospitalizations, with combined hot–dusty conditions 
seem to be exacerbating these risks even further.

There are several hypotheses that suggest diabetics may 
react to heat more intensely than healthy individuals. 
This increased heat sensitivity could be due to impaired 
sweat production and reduced blood flow to the skin, 
which are common in diabetes and can impair heat 
dissipation.16 Additionally, diabetic peripheral neurop-
athy and vascular damage may affect the body’s ability to 

Table 2 Overall and stratified relative risk of diabetes hospitalization for heat and dust exposure in Kuwait

Total Male Female Elderly (65+ years)

Relative risk (95% CI)

Heat

  33.0°C Reference Reference Reference Reference

  34.0°C 1.11 (1.01 to 1.23) 1.13 (0.99 to 1.29) 1.09 (0.95 to 1.26) 1.10 (0.90 to 1.35)

  35.0°C 1.26 (1.02 to 1.57) 1.30 (0.97 to 1.73) 1.21 (0.89 to 1.65) 1.23 (0.79 to 1.92)

  36.0°C 1.41 (1.03 to 1.92) 1.45 (0.95 to 2.22) 1.33 (0.85 to 2.09) 1.37 (0.72 to 2.61)

  37.0°C 1.52 (1.03 to 2.24) 1.57 (0.93 to 2.65) 1.43 (0.82 to 2.50) 1.49 (0.67 to 3.31)

  38.0°C 1.58 (1.03 to 2.42) 1.62 (0.91 to 2.88) 1.50 (0.81 to 2.78) 1.58 (0.65 to 3.84)

  39.0°C 1.56 (1.02 to 2.39) 1.56 (0.88 to 2.78) 1.52 (0.82 to 2.82) 1.63 (0.67 to 3.97)

  40.0°C 1.46 (0.99 to 2.15) 1.41 (0.83 to 2.38) 1.49 (0.85 to 2.62) 1.63 (0.72 to 3.69)

  41.0°C 1.35 (0.94 to 1.92) 1.25 (0.77 to 2.03) 1.44 (0.86 to 2.41) 1.64 (0.79 to 3.44)

  42.0°C 1.32 (0.91 to 1.91) 1.20 (0.72 to 1.99) 1.43 (0.83 to 2.44) 1.76 (0.82 to 3.77)

  43.0°C 1.39 (0.84 to 2.31) 1.27 (0.63 to 2.55) 1.47 (0.71 to 3.03) 2.03 (0.74 to 5.60)

  44.0°C 1.52 (0.74 to 3.13) 1.40 (0.52 to 3.78) 1.53 (0.55 to 4.26) 2.39 (0.58 to 9.86)

Dust

  For every 10 µg/m3 increase 1.03 (1.00 to 1.06) 1.01 (0.98 to 1.05) 1.05 (1.01 to 1.09) 1.03 (0.97 to 1.10)
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regulate temperature.16 With heightened exposure, the 
pathophysiology here suggests pathways leading to three 
adverse outcomes that could lead to unplanned hospital-
ization for diabetic patients: worsening foot ulcers, hypo-
glycemia, and hyperglycemia. First, warm temperatures 
could promote bacterial growth,32 which, when coupled 
with the compromised healing capabilities inherent in 
diabetic patients, can significantly exacerbate the severity 
of diabetic foot ulcers.33 Second, thermal stress is asso-
ciated with an increase in catabolic hormones such as 
epinephrine, glucagon, cortisol, and growth hormone, 
which serve as insulin antagonists.34 This hormonal surge 
may lead to a counter- regulatory response that precipi-
tates hypoglycemia. Adding complexity to this scenario, 
heat also seems to enhance the absorption of subcuta-
neously injectable insulin, further increasing the risk 
for hypoglycemia.35 Finally, heat- induced fluid loss and 
subsequent dehydration can disrupt metabolic control, 
heightening the risk of hyperglycemic crises such as 
diabetic ketoacidosis in type 1 diabetics.36

When individuals breathe in dust, the fine particles 
(those lower than 2.5 µm in diameter) travel down to 
the pulmonary alveoli, where they can cross into the 
bloodstream. This translocation can lead to endothe-
lial damage, as the particles directly injure the vascular 
endothelium. The resultant endothelial dysfunction is a 
recognized factor in the progression of vascular compli-
cations in diabetics.17 Concurrently, the presence of these 
dust particles can induce oxidative stress, overwhelming 
the body with free radicals leading to potential cellular 
damage, especially in tissues that are already susceptible 
due to hyperglycemic conditions.17 18 Additionally, the 
systemic inflammation triggered by the air pollution 
particles further exacerbates the chronic inflammatory 
state inherent to diabetes.37 This could precipitate acute 
diabetic complications, such as poor wound healing, an 
increased risk of infections, and cardiovascular events.

Exploring the interactive effects of air pollution 
and air temperature on health is increasingly gaining 

momentum, as these two exposures often occur simul-
taneously. Several studies have investigated this inter-
action in various geographic locations, focusing on 
hospital admissions38–40 and mortality, both within 
specific regions41 and globally across multiple countries 
and cities.42 43 These previous studies predominantly 
focused on cardiovascular and respiratory causes. To 
our knowledge, though, this is the first epidemiological 
assessment of such combined effects of harsh environ-
mental conditions on diabetes. While earlier research 
has linked an increased risk of diabetes to carbonaceous 
particles emitted from man- made pollution sources,11 12 
the impact of intensified natural dust storms on diabetes 
remains poorly understood.44 Dust events in the Middle 
East are increasing in frequency and severity due to a 
warming climate, causing more droughts.45 46 To isolate 
the effects of natural dust from other pollutants, we 
collected primary dust samples and analyzed their epide-
miological impact on a population level. Additionally, 
prior studies have indicated that elevated temperatures 
can escalate the risk and complications associated with 
diabetes.13 However, the extreme heat observed in 
Kuwait, as reported in our study, is unlike most studied 
locations. The evidence we provide here is suggestive 
that the combined hot–dusty conditions may synergisti-
cally increase susceptibility among diabetics and increase 
healthcare costs and burdens.

This study has a number of limitations. Initially, our 
air pollution sampling campaign was designed to extend 
over at least 3 years; however, it was prematurely stopped 
in 2020 due to the COVID- 19 lockdowns. The stoppage 
of funding also prevented us from restarting the air 
sampling. Despite this, with only 2 years of speciated 
dust data, we were still able to detect a statistically signifi-
cant effect. However, expectedly, the interaction analysis 
was likely underpowered. Nevertheless, we argue that 
the effect estimates were strongly suggestive of wors-
ening outcomes from combined hot–dusty conditions. 
Moreover, our approach aggregated data across types 

Table 3 Interaction of hot–dusty days and the relative risk of diabetes hospitalization in Kuwait

Hot days

No dust day<1 µg/m3
High dust day
85 µg/m3

Very high dust day
150 µg/m3

Relative risk (95% CI)

33.0°C Reference 1.09 (0.87 to 1.36) 1.33 (0.69 to 2.55)

34.0°C 0.99 (0.90 to 1.10) 1.09 (0.87 to 1.37) 1.33 (0.69 to 2.56)

35.0°C 0.99 (0.89 to 1.10) 1.09 (0.87 to 1.38) 1.33 (0.69 to 2.56)

36.0°C 0.98 (0.88 to 1.10) 1.10 (0.87 to 1.38) 1.34 (0.69 to 2.57)

37.0°C 0.98 (0.87 to 1.09) 1.10 (0.87 to 1.39) 1.34 (0.70 to 2.58)

38.0°C 0.97 (0.86 to 1.09) 1.10 (0.86 to 1.40) 1.34 (0.70 to 2.59)

39.0°C 0.97 (0.85 to 1.09) 1.10 (0.86 to 1.42) 1.35 (0.70 to 2.60)

40.0°C 0.96 (0.85 to 1.09) 1.11 (0.86 to 1.43) 1.35 (0.70 to 2.60)

41.0°C 0.95 (0.84 to 1.09) 1.11 (0.85 to 1.44) 1.35 (0.70 to 2.61)

42.0°C 0.95 (0.83 to 1.09) 1.11 (0.85 to 1.45) 1.36 (0.70 to 2.62)
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of diabetes, which may obscure differences in environ-
mental susceptibility among patients with type 1, type 
2, and unspecified diabetes. Surprisingly, the majority 
of discharge forms, completed by attending physicians, 
did not specify the type of diabetes. We were logistically 
unable to find the discharge forms and recode them. This 
was a lost opportunity to gain a deeper insight into the 
pathophysiological impacts of environmental factors on 
diabetes and its complexities. A limitation of this analysis 
is also the potential misclassification of exposures to heat 
and air pollution, as it is expected that subjects would 
spend most of their day indoors, whereas our measure-
ments were taken from outdoor monitors. This discrep-
ancy likely led to inaccuracies in exposure assessment. 
Additionally, physical activity, which is known to improve 
blood glucose control in type 2 diabetes, is likely reduced 
on days with high dust and heat, potentially exacerbating 
diabetic conditions. Finally, the geographical specificity 
to Kuwait, although a strength in understanding unique 
climate impacts, may limit the generalizability of our 
findings to regions with different climates and healthcare 
systems.

CONCLUSION
In today’s climate change, more regions find themselves 
unprepared to handle healthcare strains posed by inten-
sive heatwaves and the potential transboundary desert 
dust. This study shows the role of extreme climate condi-
tions on diabetic health in a country with one of the 
highest rates of obesity and diabetes globally. Environ-
mental exposures do not happen in isolation; whether 
independently or jointly, they could contribute to 
increased diabetes hospitalizations. The diabetes health-
care professional community cannot afford to ignore 
emerging environmental risk factors.
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