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BACKGROUND: Extreme heat events are a major public health concern and are only expected to increase in intensity and severity as climate change
continues to accelerate. Pregnant people are physiologically more vulnerable to the effects of extreme heat, and exposure can induce harm on both the
pregnant person and the fetus.
OBJECTIVES: This commentary argues that there is a need for greater epidemiological research on indoor heat exposure and energy insecurity as
potential drivers of maternal and child environmental health disparities.
DISCUSSION: While there is substantial evidence linking ambient (outdoor) high temperature to pregnancy-related outcomes, there is a lack of epide-
miological evidence to date on pregnant people’s exposure to high indoor temperature and adverse maternal and/or child health outcomes. Energy
insecurity is disproportionately experienced by people with low incomes and/or people of color, and indoor temperature may play a role in shaping
socioeconomic and racial/ethnic disparities in maternal and child health in the United States. Further research is needed to understand the relationship
between indoor heat exposure, energy insecurity, and pregnancy outcomes in both parents and children and to inform potential policies and practices
to enhance resilience and reduce maternal/child health disparities. https://doi.org/10.1289/EHP13706

Introduction
Extreme heat events, prolonged periods of abnormally hot temper-
atures, are the most dangerous climate-related exposures, causing
more fatalities in 2021 than floods, hurricanes, extreme cold, and
winter weather combined.1,2 Research has shown that each addi-
tional extreme heat day per month was associated with 0.07 addi-
tional deaths per 100,000 in the United States from 2008 to 2017.3
Not only can extreme heat events be fatal, but they also are associ-
atedwith nonfatal, acute health incidents (e.g., dehydration, stroke)
and exacerbation of chronic respiratory, cardiovascular, metabolic,
and mental health conditions.4 Extreme heat events are only
expected to increase in frequency and severity as climate change
continues to accelerate.3 Given the known dangers of extreme heat
events, particularly for pregnant individuals,5 there is an urgent
need for additional research to examine the implications of both
outdoor and indoor extreme heat exposure for maternal/child
health disparities.

Extreme Heat and Pregnancy
There is a growing body of research on the deleterious effects of ex-
posure to extreme ambient heat during pregnancy.5 These include
adverse birth outcomes such as preterm birth,6 stillbirth,7 congeni-
tal anomalies,8 and low birthweight,9 as well as adverse maternal
health outcomes like hypertension,10 preeclampsia,11 gestational
diabetes,12 hemorrhage,13 and infections.14 Researchers have

proposed several biological mechanisms through which extreme
heat exposure can induce harm on both mother and fetus. First,
pregnant people are thought to be physiologically more vulnerable
to the effects of extreme heat; their baseline core body temperature
is higher due to greater body fat and higher fetal metabolic rate,
and their heat loss capacity from sweating is lowered as a result of
a decreased ratio of surface area to body fat.14,15 If ambient temper-
ature exceeds maternal core body temperature, thermoregulatory
processes developed during pregnancy may become overwhelmed
and the body may respond with cutaneous vasodilation and sweat-
ing above and beyond the normal changes of pregnancy, which, in
turn, can decrease blood flow through the placenta and may lead to
dehydration.14,15 When the pregnant body becomes dehydrated,
the endocrine system releases prostaglandins, antidiuretic hor-
mone, and oxytocin, which decreases uterine blood flow and can
trigger premature contractions and labor.14,15 Preterm labor can
also be instigated by the inflammatory release of endotoxins, cyto-
kines, cortisol, and adrenaline.14,15 Acute heat stress can damage
placental cells and reduce the placental delivery of oxygen and
nutrients to the fetus.16 It also disrupts genetic activity involved in
protein folding during first trimester organogenesis, potentially
leading to congenital abnormalities or stillbirth later in the preg-
nancy.14,15 Extreme heat exposure has been shown to negatively
affect glucose metabolism and increase insulin resistance in ani-
mals and has been associated with gestational diabetes in human
studies.12,14,15,17

Discussion

The Importance of Indoor Temperature
While there is substantial and growing data linking ambient, or out-
door, high temperatures to pregnancy-related outcomes, there is no
epidemiological evidence to date on pregnant people’s exposure to
high indoor temperature and adverse maternal and child health out-
comes.18,19 We posit that unlike outdoor temperatures, there is a
lack of accessible secondary data on indoor temperatures, and it is
more logistically challenging to collect primary data on people’s
indoor environments. This is problematic because indoor tempera-
ture is just as emblematic of people’s lived experiences during peri-
ods of extreme heat, evidenced by the fact that North Americans
and Europeans spend over 90% of their time indoors.20 In fact,
studies in diverse geographic contexts have demonstrated that
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indoor temperatures oftentimes exceed those outdoors.21–24 Public
health literature has demonstrated the association between indoor
heat exposure and acute respiratory morbidity, mental health and
cognition, physical functioning, blood pressure, blood glucose lev-
els, heat stroke, and influenza transmission.18,19 While these studies
have been done in population groups at other sensitive periods of the
life course (e.g., older adults at home or in nursing homes and ado-
lescents in classrooms),21,25 none have examined the association
between indoor heat exposure during pregnancy, to our knowledge.

The authors hypothesize that indoor temperature—especially in
the home—is equally consequential for maternal and child health
and wellbeing in the United States and other high-income nations as
ambient temperature. Therefore, it is imperative to take into account
the physical and economic energy insecurity that jointly influence
thermal comfort in the home.26 Determinants of physical energy
insecurity that shape household heat conditions include the house,
mobile home, ormulti-unit building’s energy efficiency, ventilation,
availability of air conditioning units, ability of the power grid to
handle high demand, and, in the case of rental units, the degree of
control that tenants vs. landlords have over the housing unit’s
temperature.26,27 Even if physical conditions are adequate, utilities
such as air conditioning may be prohibitively expensive leading to
economic energy insecurity, potentially forcing families to choose
between paying for food, rent, or energy, otherwise known as the
“heat or eat” dilemma.28 It is also important to note that indoor
extreme heat exposure occurs not only at home but can also be an
occupational hazard if workplaces and modes of transportation for
commuting are not sufficiently cooled or ventilated.29–31 This is
especially the case for those in low-wage, nonclerical industries
involving manual labor in settings such as factories, warehouses,
and restaurants.32

Energy Insecurity as a Risk Factor for Maternal/Child
Health Disparities
Physical and economic energy insecurity are disproportionately
experienced by low-income and/or communities of color.33 For
example, in the United States, African Americans are more likely
thanwhite individuals to live in energy inefficient homes character-
ized by “structural deficiencies, outdated appliances, and faulty
energy systems.”34 Compared to the average household, house-
holds near or below the federal poverty line aremost likely to spend
at least 10% of their income on energy expenses, and African
American households experience economic energy insecurity at
the highest rate.28 From a neighborhood standpoint, low-income,
predominantly non-white neighborhoods tend to have less tree can-
opy and green space and greater impervious surface and building
density—all of which contribute to higher surface temperatures.35
Even when accounting for these built environment conditions,
measuring ambient temperature alone only takes the neighborhood
context into account, ignoring far more proximal and inequitable
physical and economic determinants of indoor home temperature.

With that in mind, we suggest that indoor heat may play a role
alongside ambient heat, which has yet to be empirically examined
in shaping maternal and child health racial/ethnic disparities in the
United States. Maternal mortality rates are over two and three
times higher among African American and American Indian/
Alaska Native women than white women, respectively.36 These
groups also bear a disproportionate burden of complications such
as preterm birth and low birthweight.36 In addition, infants born to
African American, American Indian/Alaska Native, and Native
Hawaiian/Pacific Islander mothers are at least twice as likely to die
from congenital anomalies or sudden infant death syndrome as
compared to non-Hispanic white mothers.36 It is possible that
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Figure 1. Conceptual framework on impact of energy insecurity on heat exposure and maternal and child health disparities. This schematic shows how struc-
tural inequities related to housing shape physical and economic energy insecurity, which, in turn, influence indoor heat exposure. Indoor and ambient heat ex-
posure operate jointly to affect maternal and child health disparities.
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disproportionate exposure to extreme heat due to inequitable phys-
ical, economic, and neighborhood housing conditions could con-
tribute to thesematernal and child health disparities (Figure 1).

Future Directions
Further research is needed to understand the relationship between
indoor heat exposure, energy insecurity, and pregnancy outcomes,
especially as climate change causes dangerous heat waves to
increase in frequency and severity.24 Despite the logistical chal-
lenges they pose, epidemiological data collection methods using
personal, in-home, and/or workplace temperature and humidity
monitors could be informed by prior studies that have evaluated
the association between indoor air pollution and pregnancy out-
comes or by community engaged methods employed by environ-
mental justice researchers.37–39 Equitable physical, economic, and
contextual housing conditions are necessary to ensure pregnant
people’s climate resiliency, particularly in those most vulnerable
on the basis of socioeconomic status or race/ethnicity.40 The
authors propose that research on the association between indoor
heat exposure, energy insecurity, and pregnancy could provide an
evidence base to inform potential policies and practices that can
enhance resilience to extreme heat and reduce maternal/child
health disparities. These could include improved guidelines
surrounding indoor heat exposure for pregnant people issued by
medical providers, policymakers, and public health professionals;
energy assistance programs or provision of supplemental air condi-
tioning for pregnant people and new parents; or special protections
for pregnant people to avoid disconnections by utility companies.
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