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Objectives: We aimed to analyze recent literature on heat effects on cardiovascular
morbidity and mortality, focusing on the adopted heat definitions and their eventual impact
on the results of the analysis.

Methods: The search was performed on PubMed, ScienceDirect, and Scopus
databases: 54 articles, published between January 2018 and September 2022, were
selected as relevant.

Results: In total, 21 different combinations of criteria were found for defining heat, 12 of
which were based on air temperature, while the others combined it with other
meteorological factors. By a simulation study, we showed how such complex indices
could result in different values at reference conditions depending on temperature. Heat
thresholds, mostly set using percentile or absolute values of the index, were applied to
compare the risk of a cardiovascular health event in heat days with the respective risk in
non-heat days. The larger threshold’s deviation from the mean annual temperature, as well
as higher temperature thresholds within the same study location, led to stronger negative
effects.

Conclusion: To better analyze trends in the characteristics of heatwaves, and their impact
on cardiovascular health, an international harmonization effort to define a common
standard is recommendable.
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INTRODUCTION

Due to climate change, extreme weather events such as heatwaves, drought, hurricanes, and floods
are becoming more frequent worldwide [1–3]. The years 2015–2021 were reported as the warmest
7 years period since 1850 [4]. Furthermore, apart from their frequency, heatwaves are also increasing
in intensity and duration [5, 6], with their climatological characteristics related to rainfall and weak
pressure gradient events [7, 8]. The Intergovernmental Panel on Climate Change identified the risk of
death and illness from heatwaves, especially in the vulnerable population of urban areas, as one of the
eight major risks related to global climate change [9].

The negative impact of high temperatures on human health has been assessed by several studies
[10–12]. In particular, passive heat stress can affect the human cardiovascular (CV) system by
increasing the heart rate and left ventricular contractility, and by reducing central blood volume, left
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ventricular filling pressures and cerebral perfusion [13].
Furthermore, people with a pre-existing CV disease have been
found more vulnerable to high temperature, as it reduces the
organism’s ability to thermoregulate [14]. A recent systematic
review and meta-analysis provided evidence of the increased CV
mortality and morbidity in heat conditions based on past data
[15]. Also, other aspects were explored in literature, from the
projected effects of heat on health under different climate change
scenarios [16–20], to the effectiveness of heat warning systems in
decreasing mortality [21].

However, despite the abundance of studies on heat effects on
CV health, surprisingly, there is not a unique definition of heat or
heatwave, which potentially hinders the comparison of
epidemiological studies. Also, the conditions required to
trigger an alert in heat warning systems vary by country, both
in terms of meteorological indicators and applied thresholds [22].
As a result, this complicates the comparison of epidemiological
studies dealing with the potential impact of heat on human
health, due to the usage of different temperature (or thermal
indices) indicators. Since the beginning of the 20th century, more
than 150 thermal climate indices related to human health have
been proposed in the scientific literature [23]. Several
standardization attempts were performed [24–30], but they
failed in the identification of a unique heat definition, even
within the same geographical area.

In light of the above considerations, the objective of this study
was to conduct a systematic review considering open access
papers published in the last 5 years, during which time the
attention towards this topic has increased worldwide. The
focus of the analysis was on the effects of heat on CV health,
primarily considering the applied definition of heat and,
secondarily, assessing whether such definitions had an impact
on the applied methodology and on the reported results.

METHODS

In order to ensure transparency, reproducibility, and
effectiveness, a systematic review approach [31, 32] was
applied. The Preferred Reporting Items for Systematic Review
and Meta-Analysis (PRISMA) guidelines [33] were followed.
Three online databases of scientific literature were
examined—PubMed, ScienceDirect, and Scopus—of which the
first covers biomedicine and life science, while the other two
provide an overview of multidisciplinary research. Databases
were queried in the title, abstract, or keywords using as
keywords “heat*,” “high temperature*,” “extreme weather,”
paired with “cardiovascular,” “heart,” “ischemic,” “cardiac,”
“infarction,” “myocardial,” “hypotension,” “hypertension.”
Only journal articles written in English, published between
January 2018 and September 2022, and with full text open
access availability were included.

Additional filtering was performed on the basis of full-text
content. First, papers without an explicit definition of heat were
discarded. Then, only original studies with analytic study design
(i.e., cohort study, case-control study, or case-crossover study)
based on official medical records (i.e., registered deaths, hospital

admissions, emergency calls) were included, excluding those
based on personal perception (i.e., questionnaires). Finally, for
comparison purposes, only articles that reported the results as
relative risk (RR), odds ratio (OR), or incidence density ratio
(IDR) with a 95% confidence interval were kept. The
characteristics of the included studies can be described with
the following PECO [34] statement: (P) Among humans of all
ages, genders and ethnicities, what is the effect of (E) exposure to
heat versus (C) non-heat conditions on (O) CV morbidity and
mortality.

The analysis of the resulting articles explored the following
aspects:

1) Definition of heat, considering in particular three aspects:
• Indicators: meteorological parameters and measures
included in the definition.

• Methods: statistical method applied for the comparison
between exposure groups.

• Comparison threshold: reference value applied to subdivide
exposed and non-exposed groups.

The computed values of different heat indices, in relation to
different air temperatures at the reference conditions, were also
compared.

2) Main characteristics of the study design, such as the analyzed
outcome, medical data source, geographic distribution,
sample size, and meteorological data source.

3) Quantification of the impact on CV health, considering the
statistical methods and the reported results, in relation to the
applied definition of heat.

All-cause CV diseases refer to the International Classification
of Diseases codes 390–459 (ICD-9-CM) or I00–I99 (ICD-10-
CM). To address disease-specific analyses, the results among six
groups of pathologies were grouped: myocardial infarction (ICD-
10 code I21–I23), ischemic (coronary) heart disease (including
chest pain; I20–I25), stroke (I60–I69), hypertensive diseases
(I10–I15), heart failure (I50) and other diseases (i.e., chronic
rheumatic heart disease, out-of-hospital cardiac arrest, acute
aortic dissection, arrhythmias).

In the following text, the term “heat” is used as abbreviation of
“heatwave,” the acronym TEMP is used for “temperature,” while
the term “outcome” describes the medical result (i.e., the received
diagnosis or death), and “result” refers to the RR/OR/IDR
reported in the studies. If a factor results in a “negative effect
on health” it means that the risk of developing a health-related
negative CV event is increased. All reported plots were created
with Plotly library (version 5.11.0) in Python (version 3.8.5).

RESULTS

The adopted query resulted in the identification of 11,783 articles
(3,602 in PubMed, 2,390 in ScienceDirect and 5,791 in Scopus) in
the English language and published between January 2018 and
September 2022. After title and/or abstract screening, 347 items
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were selected as possibly relevant articles, of which 232 were
unique. During the phase of full text screening, 146 studies were
excluded as not relevant, due to the lack of an explicit definition of

heat, not focusing in the reported results on CV outcomes, or
using a study design other than analytic. Lastly, considering only
articles reporting results (i.e., the influence of heat on CV health)

FIGURE 1 | Schematic of the results of the systematic literature review process, including open access papers published between 2018 and 2022, written in the
English language, and resulting from the application of the selected query (see text for details) (systematic review, international, 2018–2022).

TABLE 1 | Summary of indicators used to define heat (systematic review, international, 2018–2022).

Indicator Method Comparison
threshold

Number of
articles

References

Air temperature Percentile MMT or equivalent 21 [36, 43, 44, 46–51, 55, 57, 62, 66–68, 70, 73, 78,
80, 84, 86]

Another percentile 4 [42, 44, 64, 79]
Non-heatwave 3 [58, 59, 85]
Mean temperature 1 [52]
Arbitrary absolute
value

1 [75]

Other 1 [61]
Percentile and duration Non-heatwave 8 [37, 38, 40, 45, 54, 63, 72, 82]
Absolute value MMT or equivalent 1 [87]

Non-heatwave 1 [38]
Absolute value and
duration

Non-heatwave 4 [35, 65, 77, 81]

Other, i.e., EHF Another percentile 1 [69]
Non-heatwave 1 [41]

Air temperature + relative humidity Percentile Another percentile 1 [56]
Air temperature + water vapor pressure Percentile Non-heatwave 1 [76]

Absolute value and
duration

Non-heatwave 1 [88]

Air temperature + dew point temperature Percentile MMT or equivalent 1 [60]
Another percentile 1 [71]

Air temperature + relative humidity + wind
speed

Percentile MMT or equivalent 1 [53]
Another percentile 2 [42, 83]

Air temperature, humidity, wind speed, heat
radiation

Absolute value Non-heatwaves 1 [39]

Air masses — Other air masses 1 [74]

MMT, minimum mortality temperature; EHF, Excess Heat Factor. The total is 57 articles as three of 54 studies applied more than one combination of criteria.
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as RR, OR, or IDR with 95% confidence, 54 articles were finally
selected [35–88]. Figure 1 shows the summary of this literature
systematic review process.

Definition of Heat
In total, 21 different combinations of criteria to define heat were
found (Table 1), with only three studies simultaneously testing
and comparing more than one of them. The most frequently used
meteorological measure as heat indicator was air TEMP, applied
in 56 of 57 cases. In nine studies, air TEMP was included in the
computation of more complex indices, such as “Apparent
Temperature” [42, 53, 60, 71, 76, 83], “Perceived
Temperature” [39], “Pseudo-equivalent daily temperature” [88]
or “Discomfort Score” [56], by combining it with relative
humidity, water vapor pressure, dew point TEMP, wind speed
and/or heat radiation. The relevant calculation formulas are
summarized in Table 2, except for “Perceived Temperature”
[39] as it was not provided in the relevant study. Only one
study [74] used air masses (excluding air TEMP) to define
heat days.

In the majority of cases (n = 46), heat days were defined
using thresholds on percentiles of TEMP distribution over a
certain period, with TEMP defined by daily mean, minimum
or maximum values. The three most frequent thresholds were
99th (n = 17), 95th (n = 13) and 97.5th (n = 11) percentiles. In
eight cases, the thresholds were set on absolute TEMP values,
in the range 20°C–35°C. In several studies, the threshold
criterion was coupled with a duration requirement (e.g.,
TEMP above the threshold for at least 2–5 days). When the
study period was limited to the warmer months only, the
considered TEMP distribution was either annual or periodic.
The lowest value of heat threshold reported in literature was a
mean daily temperature of 20°C [39], set in Austria, while the
highest was a mean daily temperature of 43°C, set in
Kuwait [73].

As regards the threshold-based identification of the non-
exposed groups for comparison, this was selected based on:

• the minimum mortality TEMP (MMT) or its equivalent
(minimum hospital admission TEMP, minimum
ambulance calls TEMP etc.), derived from the relevant

minimum mathematical function applied to the temporal
series.

• another percentile (i.e., the 50th, 75th, 90th of the TEMP
distribution or the 1st percentile of heat index values).

• defining non-heatwave days (i.e., all days not classified as
heat).

• mean TEMP or arbitrary absolute value.

Moreover, in one study, instead of a threshold for direct
comparison, the authors analyzed the effects of a 1°C increase
in TEMP above the selected threshold [61].

It is worth noting that in four studies the heat definitions were
used at a national level for heat warning systems (Table 3).

For a deeper analysis and visual comparison of the different
heat indexes summarized in Table 2, in Figure 2 they were
plotted as a function of air TEMP, with the other parameters
arbitrarily set to standard conditions (relative humidity = 50%,
wind speed = 1 m/s, water vapor pressure = 2.34 kPa, dry bulb
TEMP equal to air TEMP and dew point TEMP calculated
according to Lawrence [90]).

From this graph, it can be noted that, in colder environments
(i.e., 0°C–20°C), Pseudo-equivalent daily temperature and
Apparent Temperature 1, based on water vapor pressure,
reach significantly higher values compared to the other
indexes, with a maximum difference up to 7°C. When the air
TEMP is closer to 30°C, which is considered in many studies as
the threshold for heat days, there are no big differences among the
indexes, except the Discomfort Score, characterized by lower
values. Above a value of air TEMP equal to 30.4°C, the differences
among indexes increase progressively, with Apparent
Temperature 2 and 3 rising to higher values due to their
exponential/polynomial formulas.

Study Characteristics
Among the selected articles, 27 (50%) were targeting the analysis
of mortality, 25 (46.3%) of morbidity and 2 (3.7%) of both these
outcomes (Supplementary Figure S1).

Among the studies including morbidity as a target, the
majority (n = 18) referred to hospital admissions (including
three on emergency hospital admissions), while the rest
considered emergency calls (n = 4), emergency department

TABLE 2 | Calculation formulas for complex heat indices (systematic review, international, 2018–2022).

Heat index name Formula Abbreviations References

Discomfort Score T+T wetbulb
2

T—air TEMP, [56]
T wetbulb—wet bulb TEMP (derived from air TEMP and relative
humidity)

Pseudo-equivalent daily
temperature

T + 1.5*VP T—air TEMP, [88]
VP—water vapor pressure

Apparent Temperature 1 −1.3 + 0.92*T + 2.2*VP T—air TEMP, [76]
VP—water vapor pressure

Apparent Temperature 2 T + 0.33* RH100*6.105*e
17.27* T

237.7+T − 0.7*WS − 4 T—air TEMP, [53], [42], [83]
RH—relative humidity,
WS—wind speed

Apparent Temperature 3 −2.653 + 0.994*T + 0.0153*T dewpoint2 T—air TEMP, [71], [60]
T dewpoint—dew point TEMP
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visits (n = 3), chest pain centre visits (n = 1), or general
practitioner consultations (n = 1).

In 21 (38.9%) studies, only all-cause CV diagnoses were
considered, while in the remaining 33 (61.1%) studies the
results were stratified by specific CV disease. Additionally,
regardless of the target outcome, in a few studies the impact
of heat was also studied on specific subgroups, stratified by age
(9 studies; 16.7%), by age adjusted for exposure to noise or
chronic conditions (2 studies; 3.7%), or by the presence of a
chronic condition alone (1 study; 1.9%).

The geographical origin of the selected studies spanned areas
from all six continents, with 25 (46.3%) articles from Asia, 15
(27.8%) from Europe, 8 (14.8%) from North America, 3 (5.6%)
from Oceania, 2 (3.7%) from South America and 1 (1.9%) from
Africa. The country covered with the highest number of studies
was China, using either data from single cities [42, 52, 53, 65, 75,
83, 87], individual provinces [46, 48, 68], or multiple cities spread
throughout the country [37, 47, 86].

The sample size of the target study group was explicitly
reported in 40 (74.1%) articles; alternatively, it was inferred by
multiplying the average daily incidence by the study period when
both characteristics were specified in the article (n = 10; 18.5%); in
4 (7.4%) studies it was not possible to infer any information about

sample size. The median sample size was slightly above
40,000 subjects, with a minimum of 939 individuals in a study
about congestive heart failure hospital admissions and mortality
in Boston, New York and Philadelphia [85], and a maximum of
1,154,896 in an analysis of all-cause CVmorbidity in South Africa
[84]. Sample size distribution in the different geographical areas is
reported in Supplementary Figure S2.

The median observation period was 10 years, with a minimum
of 2 years for Israel [56], Slovenia [88] and a Chinese study [83],
and a maximum of 28 years for Germany [57]. Several studies
(n = 22; 40.7%) analyzed the influence of heat only in an
arbitrarily defined warmer period of the year, beginning within
March–June and ending within June–October for the Northern
Hemisphere, while spanning from September-November to
March for the Southern Hemisphere. When narrowing the
study period, the most frequent interval was May-September
(n = 9; 16.7%).

Regarding the use of meteorological data as explicative
attributes in the analysis, dew point/air TEMP, relative
humidity, wind speed, atmospheric/barometric pressure,
precipitation, sunshine duration, solar radiation and air
pollution were utilized. When the mean values for each factor
were reported (n = 36; 66.7%), they were calculated by averaging

TABLE 3 | National definitions of heat (systematic review, international, 2018–2022).

Country Heat definition References

Australia EHF ≥ 85th percentile of the distribution of its positive values; where EHF � Ti+Ti+1+Ti+2
3 − T95*max(1, Ti+Ti+1+Ti+23 − Ti+Ti−1+...+Ti−30

30 ), [69]
where Ti is the air TEMP at day i and T95 is the 95th percentile of daily mean TEMP distribution at day i. If a heatwave is
detected for day i, days i + 1 and i + 2 are considered a heatwave as well

Belgium Daily maximum TEMP > 25°C for at least 5 consecutive days, including at least 3 days with daily maximum TEMP ≥ 30°C [35]
Latvia 1st level of heat: daily maximum TEMP ≥27°C and <33°C for at least 2 consecutive days [77]

2nd level of heat: daily maximum TEMP ≥ 33°C
Sweden Low intensity heat: daily maximum TEMP ≥ 30°C for 3 consecutive days [81]

High intensity heat: daily maximum TEMP ≥ 30°C for 5 consecutive days and/or daily maximum TEMP ≥ 33°C for
3 consecutive days

Country column refers to the country in which the definition is used at national level. EHF, Excess Heat Factor as defined in Nairn and Fawcett [89].

FIGURE 2 | Heat indexes as a function of temperature as defined in Table 2, computed assuming relative humidity = 50%, wind speed = 1 m/s, water vapor
pressure = 2.34 kPa and dew point temperature calculated according to Lawrence [90] (systematic review, international, 2018–2022).

Public Health Reviews | Owned by SSPH+ | Published by Frontiers October 2023 | Volume 44 | Article 16062665

Nawaro et al. Heatwave Definitions for Cardiovascular Health



all records from all measurement stations in the study area. In 9
(16.7%) studies, interpolated meteorological maps (e.g., maps at
ZIP code level [82], district level [84] or at 2 km spatial resolution
[36]) were alternatively used.

Among the 13 (24.1%) studies for which the events’ location or
patients’ home address were available, only two [48, 56]
associated them with the meteorological conditions at the
event time, while Jiang et al. [86] linked the TEMP with that
at the hospital location, as the majority of patients did not report
their complete address.

Quantification of Heat Impact on
Cardiovascular Health
To assess the impact of heat on CV health, the majority of articles
(n = 39; 72.2%) applied the distributed lag non-linear model,
which describes the response to exposure accounting for a
delayed effect [91]. The number of tested lags varies up to
30 days, with the most frequent choices being 21 (n = 15;
27.8%), 3 (n = 9; 16.7%), and 14 (n = 5; 9.3%).

Six studies considered the duration of the temperature
increase as a criterion to classify a heatwave, but only in two
studies was a stronger negative effect reported. Other applied
techniques included the generalized linear models (n = 13;
24.1%), or a simplified approach based on the comparison
between incidence rates during heat and non-heat days (n = 2;
3.7%). In several studies, mostly in those using only air TEMP to
define heat, the statistical models were further adjusted by
meteorological factors (n = 9; 16.7%), by air pollution (n = 4;
7.4%) or by both (n = 22; 40.7%).

In 14 studies (25.9%) a case-crossover design, as proposed by
Maclure [92], was applied. By using the same subjects as both cases
and control at different points in time, this design allows to control
for time-invariant characteristics, such as gender or medical history.

In the majority of studies, the results were reported as RR (n =
44; 81.5%), and in the remaining studies as OR (n = 7; 13%) or
IDR (n = 3; 5.6%). The values of these three indicators are
approximately equal when the initial risk (i.e., prevalence of
the disease in the population under study in non-heat
conditions) is relatively small [35, 93, 94], and are therefore
comparable under this assumption.

Most of the results (n = 37, 68.5%) showed a negative influence
of heat for all-causes CV health (i.e., an increase in risk in relation
to the comparison threshold as indicated in Table 1) in the range
from 1.02 in Spain (95% CI: [1.00–1.04]) [70] and New York State
(95% CI: [1.01–1.04]) [58] to 1.47 (95% CI: [1.43–1.51]) in
Jiangsu Province, China [48], with two outliers equal to 4.61
(95% CI: [3.67–5.78]) [69] and 3.09 (95% CI: [1.72–5.55]) [73].
However, the studies differed in the applied heat definition
(Table 1). All studies that reported a negative effect of heat on
CV health found this effect stronger if associated with a shorter
lag, while this relation seemed to weaken over time. In disease-
specific analysis, the most consistent and significant results were
reported for stroke, varying from 1.20 (95% CI: [1.02–1.40]) [79]
to 1.62 (95% CI: [1.39–1.88]) [46], with the most frequently
associated heat definition based on the combinations of air
TEMP, percentile, and MMT equivalent. The strongest

disease-specific result was found for myocardial infarction
(5.22, 95% CI: [2.14–12.73]), with heat defined using Apparent
Temperature 2, percentile and MMT equivalent [53].

However, in 11 studies (20.4%) no statistically significant
results were found, while in 6 (11.1%) a statistically significant
decrease in the risk of developing a CV acute event during heat
was surprisingly reported. Of these six, one study analyzed all
CV diseases together [83], while the others referred to specific
diseases, i.e., myocardial infarction [79], hypertensive diseases
[76, 79], heart failure [45, 63, 79], and acute aortic
dissection [75].

A complete summary of these results is presented in
Supplementary Figure S3 for all-cause CV outcomes and in
Supplementary Table S1 for specific CV diseases.

Finally, to identify a possible correlation between the applied
definition of heat and the reported results relevant to the CV risk,
an additional analysis was performed considering the percentage
deviation of the reported heat threshold from the mean annual
temperature, calculated as:

100*
heat threshold –mean annual temperature

mean annual temperature

This computation was feasible in 13 (24.1%) studies in which
the absolute values of both parameters were explicitly specified,
and relevant results are presented in Figure 3. Excluding three
outliers (i.e., all-cause CV mortality in Kuwait [70], out-of-
hospital cardiac arrest events in Israel [56], and acute aortic
dissection morbidity in China [75]), a slight trend of higher risk
with increasing deviation of the heat threshold from the mean
annual temperature could be observed, yet not with robust
statistical evidence, with the coefficient estimated by ordinary
least squares linear regression equal to 0.002 (R2 = 0.19).

DISCUSSION

In this systematic review, studies focusing on the impact of heat on
CV morbidity and/or mortality published in the last 5 years were
selected, in order to assess the latest progresses made by the scientific
community in this field. The identified studies were conducted
across all six continents, with a leading role of Asia (both in
terms of number of publications and of sample size), followed by
Europe andNorthAmerica. Source data spanned from 1987 to 2021.

Despite having the same goal, the examined study settings
were extremely heterogeneous. Such heterogeneity could be
noticed both in the definition of heat in the field of CV
health, but also in other aspects, such as the medical and
meteorological data used, the sample size, the observation
periods, and the applied methodology for analysis. In addition,
biases due to measurement error [95] or spatial autocorrelation
[96] could affect data generation and processing.

Applied Definitions of Heat
As early as the beginning of the 21st century, Robinson [25]
pointed out that, due to the lack of an unequivocal heat definition,
it was difficult to assess if heatwaves varied in intensity or
prevalence, which further hindered research into climate
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change. The majority of heat indices developed since the
beginning of the 20th century have been collected and
organically presented in a theoretical framework [23].
However, to the best of our knowledge, a comparison of their
viability in health-related studies is still missing. Moreover, only a
small fraction of those indices uses exclusively meteorological
factors, such as air TEMP, relative humidity and solar radiation
[97] or air TEMP, dewpoint TEMP, relative humidity, cloud
cover, and wind speed [98], whereas many other indices (e.g.,
[99–103]) are also based on human thermal comfort factors
(i.e., human metabolic rate), a type of data that is labor-
intensive in terms of collection and processing, thus hindering
their application in heat-health related research. In the examined
recent literature, only one review focusing on heat definitions and
addressing their heterogeneity was found [104]. It included
60 studies published in 2001–2015 covering Asia, Australia,
Europe, and North America, considering the impact of heat
on all-cause CV and respiratory mortality.

In line with this established knowledge, twenty-one unique
combinations of indicators, methods, and comparison thresholds,
with the purpose of defining heat days and to distinguish them from
non-heat days, were identified in the studies selected for this review.
Differently from de Freitas and Grigorieva [23], themajority of these
studies used air TEMP alone, averaging the values obtained from
measurement stations without applying spatial interpolation. Other
meteorological data (i.e., relative humidity, water vapor pressure,
dew point TEMP, wind speed and/or heat radiation) were eventually
used only for a following adjustment of the statistical models.

Several different approaches could be identified:

- even when a combined indicator was applied, it is worth
noting that three different versions of “Apparent
Temperature” were found, as a result of the application

of simplified versions, depending on data availability, to the
same original index [23].

- only the term “Perceived Temperature” can be referred
directly to a specific and standardized heat index.

The choice of the index to be considered for the analysis is
strongly relevant in terms of comparing results obtained in
different studies. In fact, as shown in Figure 2, the values of
the different indexes as a function of TEMP cannot be assumed to
be the same, except for a narrow range around 30°C.

Two main methods for setting the heat threshold were
identified, namely, using a percentile of the indicator’s
distribution or its absolute value. However, in this latter case,
the reported threshold values varied in a range of 15°C, making it
impossible to formulate a universal threshold with this strategy.
In addition, four national definitions implemented in heat
warning systems were identified, one of which applied to a
territory different from the country in which the criterion was
defined. Our findings, showing strong heterogeneity in heat
definitions applied to research studied published from 2018 to
2022, indicated that despite the increased international interest in
climate change effects on health, there was no important progress
in the harmonization and standardization process towards a
singular heat definition to be applied in the context of CV
health. A similar finding was already present in a former
systematic review including 60 studies published in the period
2001–2015 [104], thus further highlighting the lack of action of
the scientific community towards this problem.

It is important to assess if there is an overall trend, transversal
to different settings, in the relationship between the selected
definition of heat and the related results in terms of impact on
CV health. In this perspective, Xu et al. [104] noted that a
modification of the threshold value led to a more important

FIGURE 3 | Relationship between the percentage deviation of the considered heat threshold from the mean annual temperature and associated cardiovascular
risk, subdivided as all-cause and cause-specific mortality or morbidity. RR, relative risk; OR, odds ratio; IDR, incidence density ratio. Dot size is proportional to the
duration of the observation period expressed as number of years (systematic review, international, 2018–2022).
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change in mortality than the modification of heatwave duration,
which is consistent with our findings. In studies where multiple
thresholds were tested, a higher risk was usually reported for
higher thresholds. This trend is in agreement with Xu et al. [105],
who focused on heat definitions and five health events
(i.e., ambulance service uses, all-cause and cause-specific
emergency department attendances, all-cause and cause-
specific hospitalizations) in Brisbane, Australia. In that study,
multiple heat definitions were tested, combining three durations
(2–4 days) and 10 percentiles (90th–99th) applied on mean and
maximum air TEMP. The authors concluded that, for three of
these five health events, a threshold selection with the 97th
percentile resulted in a significant association with heat
(regardless of duration and TEMP indicator), while for the
other two a significant correlation was found with a threshold
set to 98th or 99th percentile (depending on TEMP indicator).
Among the studies included in this review, it is worth noting that
two outliers with very elevated health risk in all-cause CV events
were identified for Seville and Kuwait. The former compared the
99th percentile of a heat index distribution, accounting for the
TEMP in time windows of up to 30 days, to its 1st percentile. The
latter compared the 99th percentile of daily mean air TEMP
distribution to the MMT. In both geographical areas, a very high
percentile threshold was considered even though both of these
territories are characterized by particularly hot summers, thus
focusing on extreme events only, in a set-up that could partly
explain the outlier results.

Impact of Heat on Cardiovascular Health
As a secondary target, this review also focused on the results of the
analysis conducted in the included studies, with an aim of
assessing the impact of heat on CV health, thus addressing the
applicability and robustness of heat definitions towards this
specific purpose.

On this topic, Xu et al. [104] concluded, pooling the results of
their review, that an increased mortality could be found in the heat
condition. Moreover, in the United States, the relationship between
temperature and all-cause mortality was found to be non-stationary
from a spatial point of view [106]. In previous research on the effect
of heat onmortality andmorbidity, both individual (e.g., age, gender,
medical history, race, education level, occupation) and community-
level (e.g., housing quality, medical care, air pollution) characteristics
were identified as effect modifiers [107–112]. In this regard, the case-
crossover method should present an advantage over traditional
cohort or case-study designs, as it overcomes the between-person
confounding factors. In the studies here considered, the vastmajority
of results reported a negative impact of heat on all-cause CV health,
yet they used different parameters (mainly RR, but alsoOR and IDR)
computed from different data sources (hospital admissions,
emergency calls, emergency visits). In general, no specific
information on the patient’s home address could be matched
with the meteorological conditions at the time of the event.

In CV disease-specific analysis of both morbidity and mortality,
an increased risk for stroke and ischemic (coronary) heart disease
was evidenced in all the examined studies. In the case of the former,
similar results have been previously reported, being particularly
strong for ischemic stroke [113, 114], with possible explanations

including dehydration, increased blood viscosity,
hemoconcentration, and elevated cholesterol levels during heat
[113]. In addition, indications that a sudden and large increase in
TEMP (i.e., ΔTEMP ≥ 5°C) increases the risk of ischemic stroke
events, rather than the absolute TEMP values, were given [115].

The increased risk of coronary artery disease could be
explained with endothelial dysfunction expressed as a
reduction of flow-mediated vasodilation associated with
increased temperature [116]. When patients are exposed to a
hot environment, the CV system increases the cardiac output to
augment blood flow to the skin for cooling [117], thus increasing
the heart oxygen consumption and potentially generating a
precipitation of events towards myocardial infarction. An
increased risk for this pathology was reported in 11/
12 analyzed studies. Similarly, a previous study demonstrated
that higher environmental temperatures were associated with an
increased risk in myocardial infarction [118], with an influential
effect during the first 6 h after exposure.

The increased risk found in 5/7 studies on hypertension-
related outcomes may seem contradictory as a response to
heat, but it was explained with a possible interaction between
heat and anti-hypertensive medications [79].

When focusing on heart failure morbidity, a lower risk was
apparently associated with heat. However, one of these studies
also analyzed heart failure mortality and reported a higher RR.
This finding is in agreement with other reviews on the effects of
heat on CV diseases, where a predominance of negative effects
was reported for mortality, in contrast with an impact on
morbidity that was not always consistent [15, 119–121].

Among other causes, risk of aortic dissection was found to be
reducedwith heat, while risks of out-of-hospital cardiac arrest, chronic
rheumatic heart disease, and arrythmias were found to be increased.

Study Limitations and Conclusion
Our study has some limitations. Despite the selection of studies being
conducted with the most uniform approach possible with regards to
the methodology, the heterogeneity of resulting articles made any
advanced meta-analysis unfeasible. The dissimilarities did not only
concern themain target of this work, whichwas the definition of heat,
but also affected other factors as well, such as the health outcomes or
the characteristics of the studied population. The attempt to
generalize the results, neglecting details such as the considered
effect modifiers, may have led to some particular trends being
missed. Moreover, studying heat and heatwaves has consistent
and complex climatological implications that were not considered
in detail in this review, as the focuswas limited to the effects of heat on
cardiovascular health. Lastly, an inherent limitation of our study is
that it considered only open access publications over an arbitrarily
selected short time frame of 5 years. However, this choice was made
to focus onmore recent studies to capture the state-of-the-art relevant
to the topic, as a previous systematic review by Xu et al. (2016)
covered previously published studies. As the literature search and
data extraction were performed by a single person, this constitutes a
possible methodological limitation of our approach.

Despite the abundance of recent research in this field, there is no
single definition of heat, together with a possible confusion
introduced by the terminology and related different formulas for
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the utilized heat indices. An international effort should be conducted
in order to harmonize a common standard in representing and
evaluating such data including the definition of heatwave. This
would allow better comparison among geographical areas and
analysis of trends in heatwave intensity, duration and prevalence,
as well as the human heat adaptation capabilities. Such analyses
could be incorporated into public health programs with a two-fold
strategy: short-term intervention, by developing automated systems
capable of analyzing and predicting, based on the current
environmental variables on a given territory, the possible
immediate impact of heatwaves, to guide emergency services in a
better organization and deployment of available resources, as well as
activating heat alert systems; and mid-long term intervention, by
highlighting those features for a certain territory that could influence
the citizen’s resilience, and planning urbanistic interventions
accordingly.
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