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Abstract
Background  Workplace may not only increase the risk of heat-related illnesses and injuries but also compromise 
work efficiency, particularly in a warming climate. This study aimed to utilize machine learning (ML) and deep learning 
(DL) algorithms to quantify the impact of temperature discomfort on productivity loss among petrochemical workers 
and to identify key influencing factors.

Methods  A cross-sectional face-to-face questionnaire survey was conducted among petrochemical workers 
between May and September 2023 in Fujian Province, China. Initial feature selection was performed using Lasso 
regression. The dataset was divided into training (70%), validation (20%), and testing (10%) sets. Six predictive models 
were evaluated: support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), Gaussian 
Naive Bayes (GNB), multilayer perceptron (MLP), and logistic regression (LR). The most effective model was further 
analyzed with SHapley Additive exPlanations (SHAP).

Results  Among the 2393 workers surveyed, 58.4% (1,747) reported productivity loss when working in high 
temperatures. Lasso regression identified twenty-seven predictive factors such as educational level and smoking. All 
six models displayed strong prediction accuracy (SVM = 0.775, RF = 0.760, XGBoost = 0.727, GNB = 0.863, MLP = 0.738, 
LR = 0.680). GNB model showed the best performance, with a cutoff of 0.869, accuracy of 0.863, precision of 0.897, 
sensitivity of 0.918, specificity of 0.715, and an F1-score of 0.642, indicating its efficacy as a predictive tool. SHAP 
analysis showed that occupational health training (SHAP value: -3.56), protective measures (-2.61), and less physically 
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Background
The petrochemical industry plays a crucial role in the 
global economy [1], while being associated with substan-
tial health risks [2]. Petrochemical workers are exposed to 
a variety of occupational hazards during the production 
and processing of petrochemical products, such as heat 
stress, noise, petrol, and hydrogen sulfide [3, 4]. Among 
these hazards, temperature discomfort has become a 
pressing occupational health and safety issue, especially 
in the context of climate change [5]. Studies have indi-
cated that workplace heat exposure may have deleterious 
effects on workers’ health and increase the risk of occu-
pational injuries/accidents [3, 4, 6]. Long-term heat expo-
sure may lead to some chronic health outcomes, such as 
cardiovascular dysfunction [7], hypertension [8], and 
abnormal immune parameters [9]. In addition to occu-
pational health and safety [10], empirical evidence from 
Australia suggested that high temperatures may burden 
the global economy [11], affecting all levels of our society. 
Dasgupta and colleagues found that a 3.0  °C increase in 
global temperatures could reduce the total workforce by 
18% [12]. However, most studies investigating the risks 
associated with temperature discomfort have been con-
ducted in high-income countries/region [10], with lim-
ited studies from heat-vulnerable middle-low-income 
countries. Moreover, scant attention has been paid to the 
impact of temperature discomfort on labor productivity 
loss among petrochemical workers, a population suscep-
tible to heat-related illnesses and injuries [13].

In reflecting the real occupational settings where 
workers are typically exposed to a combination of mul-
tiple hazards, conventional analytical approaches, such 
as regression analysis and time-series forecasting, often 
fall short of comprehensively and precisely capturing the 
multifaceted effects of high-temperature environments 
on occupational outcomes [14]. Their limitations stem 
primarily from their intrinsic constraints: a limited ability 
to model non-linear relationships, challenges of captur-
ing interactions between multiple variables, and difficul-
ties in adequately handling high-dimensional data [14]. 
Specifically, when addressing complex and interactive 
effects of multiple exposures, conventional methodolo-
gies may overlook subtle patterns and interdependencies 
that machine learning and deep learning techniques are 

better suited to reveal [15]. Moreover, machine learning 
and deep learning are robust computational tools capable 
of analyzing large datasets and exploring intricate pat-
terns and relationships [16]. Their effectiveness spans 
diverse domains, from disease prediction and patient 
outcomes in healthcare [17], to ecosystem conservation 
and pollution assessment in environmental science [18, 
19], and understanding behavior and cognitive functions 
in psychology [20].

This investigation employed multiple machine learning 
and deep learning models — SVM, RF, XGBoost, GNB, 
MLP, and LR — to address specific challenges inherent to 
large-scale data analysis. SVM excels in processing high-
dimensional data but can be computationally intensive 
on massive datasets [21]. RF is widely used at handling 
numerous features and missing values, yet it is prone to 
overfitting in noisy data [22]. XGBoost is valued for its 
speed and performance yet lacks interpretability and is 
sensitive to hyperparameter settings [23]. GNB offers 
simplicity and scalability, however, it assumes indepen-
dence between features, which is often unrealistic [23]. 
MLP is effective at identifying complex patterns but 
may overfit due to its complexity [24]. Conversely, LR is 
straightforward but limited to linear relationships [25]. 
Considering these characteristics, this study adopted a 
multimodal approach, leveraging the strengths of each 
model to offset others’ weaknesses. This method aims to 
integrate multiple models’ outcomes, resulting in more 
accurate and robust predictions, thereby enhancing the 
overall efficacy and reliability of the analytical process.

Currently, few studies have investigated the impact of 
temperature discomfort on the labor productivity loss 
of petrochemical workers, particularly through machine 
learning and deep learning methods. Based on forecast-
ing models, this study aimed to assess the impact of tem-
perature discomfort on the productivity of petrochemical 
workers and identify the influencing factors. Findings of 
this study may provide valuable evidence for decision-
making and heat safety management in the petrochemi-
cal industry.

demanding jobs (-1.75) were negatively associated with heat-attributed productivity loss, whereas lack of air 
conditioning (1.92), noise (2.64), vibration (1.15), and dust (0.95) increased the risk of heat-induced productivity loss.

Conclusions  Temperature discomfort significantly undermined labor productivity in the petrochemical sector, and 
this impact may worsen in a warming climate if adaptation and prevention measures are insufficient. To effectively 
reduce heat-related productivity loss, there is a need to strengthen occupational health training and implement strict 
controls for occupational hazards, minimizing the potential combined effects of heat with other exposures.

Keywords  Temperature discomfort, High temperature, Labor productivity loss, Machine learning, SHAP
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Methods
Study design and participant recruitment
A cross-sectional questionnaire survey was conducted 
among petrochemical workers between May and Sep-
tember 2023 at the Quangang Petrochemical Industrial 
Park (QPIP), Quanzhou, Fujian Province, China. Located 
on the west bank of the Taiwan Straits and the south bank 
of Meizhou Bay, QPIP was launched in 2005. It covers an 
area of about 30 square kilometers and has a population 
of around 360,000. Currently, 45 petrochemical related 
enterprises have settled in the QPIP, which has been rec-
ognized as one of the top 20 chemical industrial parks in 
China and a national circular transformation model park. 
The industrial chain of QPIP mainly includes ethylene, 
propylene, carbon tetrachloride, benzene and paraxylene, 
with a total output value of about $15 billion [26].

According to the Law of the People’s Republic of China 
on the Prevention and Control of Occupational Diseases, 
employers are required to organize regular occupational 
health examinations for workers exposed to occupational 
hazards [27]. During the study period, workers from the 
two leading petrochemical plants of QPIP were recruited 
to participate in the face-to-face questionnaire survey 
while undergoing their occupational health examinations 
in the Medical Examination Center of Minnan Branch of 
the First Affiliated Hospital of Fujian Medical University. 
Inclusion criteria were: (a) Currently registered petro-
chemical workers at QPIP; (b) Workers undergoing occu-
pational health examinations during the study period; (c) 
Individuals who consent to participate and can provide 
informed consent. Exclusion criteria were: (a) Workers 
younger than 18 or older than 65 years; (b) Individu-
als with cognitive impairments or mental health condi-
tions that preclude understanding of the questionnaire 
or independent completion; (c) Workers who have not 
worked in QPIP in the three months prior to the study 
commencement.

Trained interviewers administered the electronic ques-
tionnaires via iPads. All conversations between partici-
pants and interviewers were recorded, and the entered 
data were double-checked against the recordings on the 
same day to prevent data entry errors or misclassification. 
Participation in this study was completely voluntary, with 
no incentives provided. The study was approved by the 
Fujian Medical University Ethics Committee (Approval 
No. 2022 − 111).

Questionnaire design
Following an extensive literature review and consulta-
tions with relevant experts, including senior occupa-
tional hygienists in petrochemical plants and university 
professors in occupational health, we developed a survey 
instrument. The questionnaire was initially piloted with 
a representative sample of 50 petrochemical workers to 

ensure clarity and relevance. The questionnaire com-
prised three parts. The first part mainly requested the 
following demographic information and individual life-
style habits: gender, age, body mass index (BMI), marital 
status, education level, annual income, medication use, 
sleep quality, smoking, and alcohol consumption. The 
second part included questions on employment details 
such as task group, job category, working hours per 
week, use of personal protective equipment (PPE) such 
as reflective vests, safety boots, helmet, gloves and over-
all. Occupational hazards exposure information was col-
lected through yes/no questions. The third part included 
six questions to measure the impact of high temperatures 
on work efficiency, using a 5-point Likert scale (strongly 
disagree, disagree, neutral, agree, strongly agree), with 
scores assigned from 1 to 5, respectively. The total score 
could range from 6 to 30. In this study, workers with 
scores between 6 and 18 were categorized as ‘No labor 
productivity loss’, while those with scores between 19 and 
30 were categorized as experiencing ‘Labor productivity 
loss’. For specific questions, please refer to the supple-
mentary file. The Cronbach’s alpha coefficient for the 
scale was 0.81, indicating good reliability [28].

Statistical analysis
Descriptive analyses were conducted to character-
ize normally distributed continuous variables, pre-
sented as mean ± standard deviation (Mean ± SD), while 
non-normally distributed data were reported using 
median ± inter-quartile range (Med ± IQR). To compare 
differences in quantitative variables between groups, an 
independent samples t-test was employed. Categorical 
variables were summarized using frequencies and per-
centages. The Chi-square (χ2) test or Fisher’s exact test 
was used for statistical analysis of categorical variables.

Feature selection for predictive modeling utilized Lasso 
regression. This study applied five-fold cross-validation 
to divide the data into three distinct sets: training (70%), 
validation (20%), and testing (10%) [29]. During the 
training phase, six predictive algorithms were explored, 
including SVM, RF, XGBoost, GNB, MLP, and LR. SVM: 
C (regularization factor) was set to 1.0, kernel function 
was the sigmoid type, and tol (tolerance for convergence) 
was 0.001. RF: criterion = “gini”, max depth = 500, min 
impurity decrease = 0.0, and n estimators = 436. XGBoost: 
objective function optimized for binary: logistic, learning 
rate set to 0.1, maximum tree depth capped at 6, mini-
mum sum of instance weight (min child weight) fixed at 
1, and L2 regularization term (reg lambda) at 0.5. GNB: 
a model was constructed utilizing the naiveBayes func-
tion from the e1071 package in R, with the priors (a 
priori probability) set to default as None and var smooth-
ing established at 1e-07. MLP: activation function (non-
linear function) = logistic, hidden layer sizes = (10, 10), 
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and max iterations = 10. LR: maximum iterations (max 
iter) = 100, regularization type (penalty) =‘1’, convergence 
metric (tol) = 0.0001, and regularization factor (C) = 0.123.

During the validation phase, hyperparameter optimi-
zation was performed to fine-tune each model. The test 
set facilitated the assessment of model efficacy using 
various metrics, such as area under the curve (AUC), 
accuracy, precision, sensitivity, specificity, F1-score, and 
cutoff value. These metrics guided the selection of the 
optimal model. Interpretability of the selected model 
was enhanced through SHapley Additive exPlanations 
(SHAP) value analysis. Statistical analyses were con-
ducted utilizing SPSS software (version 25.0) and the R 
(version 4.1.3), with results presented with a 95% confi-
dence interval (CI).

Extraction of key features
Prior to applying Lasso regression for variable selection, 
it is crucial to consider its key assumptions. Lasso regres-
sion, a method known for its ability to perform both 
variable selection and regularization to prevent overfit-
ting, assumes that the relationships between the predic-
tor variables and the outcome are linear and additive 
[30]. Another critical assumption is the independence of 
errors, meaning that the residuals from the models are 
uncorrelated with each other [31]. Given the potential 
for multicollinearity among predictor variables, a com-
mon challenge in datasets with numerous features, Lasso 
regression is particularly adept at handling such condi-
tions due to its regularization component [32].

In this study, we employed Lasso regression to stream-
line our predictive model. By introducing a penalty term 
(L1 norm) into the cost function, Lasso regression con-
strains the absolute values of the coefficients, effectively 
shrinking some coefficients to zero [32]. This regular-
ization process not only reduces the complexity of the 
model by performing feature selection but also mitigates 
the risk of multicollinearity, thereby enhancing model 
interpretability and reliability [33]. Specifically, we uti-
lized the Lasso CV algorithm, which integrates five-fold 
cross-validation. This approach systematically evaluates 
the model’s performance with different data subsets and 
excludes variables with coefficients reduced to zero [34]. 
Such a methodical exclusion based on cross-validation 
enhances the model’s robustness and generalizability, 
aligning with our aim to efficiently identify key factors 
influencing productivity loss among petrochemical work-
ers due to temperature discomfort.

Construction of machine and deep learning models
To address the multifaceted nature of temperature dis-
comfort and the associated productivity loss, this study 
employed a variety of ML models. Given the unique 
strengths and biases inherent in different algorithms 

based on their architecture and underlying assumptions, 
utilizing a diverse array of analytical tools facilitates the 
selection of the optimal model to ensure robust predic-
tions. In this research, the following six models were 
adopted to explore the predictive efficiency of tempera-
ture discomfort and productivity loss: (1) Support vector 
machine (SVM): This model exhibits strong generaliza-
tion capabilities in handling high-dimensional data and 
is particularly adept at solving nonlinear problems [21]; 
(2) Random forest (RF): As part of ensemble learning 
techniques, RF can process a large number of features, 
providing highly accurate classifications and possessing 
good noise resistance [22]; (3) Extreme gradient boost-
ing (XGBoost): An enhanced version of decision trees, 
XGBoost optimizes performance through construct-
ing multiple models and is renowned for handling large 
datasets and complex pattern recognition [23]; (4) Gauss-
ian Naive Bayes (GNB): Applicable to environments 
with smaller data volumes or known distributions, this 
method is easy to implement and execute swiftly [35]; 
(5) Multilayer perceptron (MLP): A type of deep neural 
network suitable for problems with complex feature cor-
relations and multiple layers, it can learn deeper repre-
sentations of the data [24]; and (6) Logistic regression 
(LR): Although a more traditional technique, it demon-
strates stable and interpretable performance in binary 
classification problems [25].

Assessment of variable significance
ML and DL models are often considered to be opaque 
due to the complexity involved in understanding how 
these algorithms generate precise predictions for specific 
groups. To address this challenge, our study employed 
SHAP (SHapley Additive exPlanations) values, a compre-
hensive framework initially derived from the Shapley val-
ues in cooperative game theory [36].

SHAP values provide a powerful framework derived 
from Shapley values in cooperative game theory [37]. 
These values offer a robust method by articulating how 
each feature in the model contributes to the prediction 
outcome both individually and in conjunction with other 
features [37]. This capacity to distribute the ‘payout’ 
(prediction output) among the features proportionately 
according to their contribution enables us to dissect the 
decision-making process of complex ML and DL mod-
els. Consequently, this detailed dissection helps identify 
primary determinants adversely affecting work efficiency 
under high-temperature conditions in the petrochemical 
industry.

Practically, SHAP values assess the marginal contri-
bution of each feature towards the predictive accuracy 
at any given instance [38]. For our optimal model, this 
translates into identifying which variables most sig-
nificantly impact productivity loss due to temperature 
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discomfort. By examining interactions between features 
in the context of their contribution to the output, SHAP 
also guides understanding synergistic effects that may 
not be readily apparent in traditional statistical or even 
some machine learning evaluations.

Results
Comparison of demographic characteristics between 
affected and unaffected workers
In this study, 3,000 workers were recruited to participate 
in the survey, with 2,586 accepting, resulting in a partici-
pation rate of 86.20%. Of the questionnaires completed, 
2,393 were valid, yielding an effective response rate of 
92.54%. As shown in Table  1, most of the respondents 
(1,747, 58.37%) reported productivity loss when working 
in high-temperature conditions. Moreover, male workers 
were more likely to report productivity loss due to heat 
exposure compared to their female counterparts.

The vast majority of the participants were of Han 
nationality (99.12%), with Han workers showing a higher 
proportion of self-reported productivity loss due to heat 
exposure than their counterparts from ethnic minorities 
(9 Manchu, 11 Hui, and 1 She) (P = 0.008). The average 
age of the participants was 38.07 ± 11.15 years, with no 
significant difference in age between those affected and 
unaffected by heat-related productivity loss (P = 0.192). 
However, variations in BMI were observed. The over-
all average BMI was 24.37 ± 3.82  kg/m2. Among work-
ers with a normal BMI, those reporting productivity 
loss had a higher BMI than those without productivity 
loss (21.81 ± 1.41 vs. 21.51 ± 1.51, P = 0.001). Similarly, in 
the obese category, affected workers also had a higher 
BMI than unaffected ones (30.95 ± 4.87 vs. 30.12 ± 1.91, 
P = 0.042). However, no significant differences in BMI 
were found between the normal and overweight groups 
(P > 0.005).

Education levels showed a marked difference between 
the two groups. Unaffected workers had higher educa-
tion levels, with more individuals holding secondary 
education or below (21.67% vs. 26.94%) and postgradu-
ate degrees (1.70% vs. 2.00%). This difference was statis-
tically significant, indicating that educational attainment 
might influence susceptibility to productivity loss due to 
heat exposure. A higher percentage of unaffected work-
ers were married (73.22%), compared to affected work-
ers (67.37%) (P = 0.028). Additionally, affected workers 
had a higher prevalence of chronic diseases compared to 
unaffected workers (23.93% vs. 16.10%, P < 0.001), with 
hypertension being the most common (87.21%), followed 
by diabetes (12.79%). Workers who drank at least once 
per month had a higher percentage of productivity loss 
compared to those drank less frequently. No significant 
difference in smoking habits was observed between the 
two groups (P = 0.872). However, medication use was 

significantly higher among affected workers (10.36%) 
compared to unaffected workers (7.59%).

Table  2 highlights significant correlations between 
occupational factors and heat-induced labor productivity 
loss. In terms of nature of work, workers in aromatic and 
olefin production (81.33%) had the highest percentage 
of labor productivity loss due to heat exposure, followed 
by petroleum refining (76.64%), storage and transporta-
tion (74.34%), and service operation (68.32%). Workers 
affected by heat-induced efficiency loss had a longer aver-
age employment duration (15.28 ± 12.15 years) compared 
to their unaffected counterparts (13.91 ± 11.27 years, 
P = 0.041). A similar pattern was observed in weekly work-
ing hours, with affected workers working longer hours 
(48.92 ± 6.55  h) than those unaffected (44.45 ± 7.62  h, 
P = 0.048). Either indoor frontline workers (74.42%) or 
outdoor frontline workers (73.25%) had a significantly 
higher percentage of heat-induced labor productivity loss 
than managerial or supervisory staff (69.52%). Workplace 
greenery did not significantly impact productivity loss 
due to heat (P = 0.25). The presence of heat control mea-
sures like electric fans and air-conditioning units were 
significantly associated with productivity loss (P = 0.017). 
Exposure to occupational hazards like vibration, noise, 
dust, fumes, and oil mist were significant determinants 
of work efficiency, with exposed workers consistently 
showing higher labor productivity loss across these fac-
tors (P < 0.001). The level of physical strain was posi-
tively associated with labor productivity loss. Workers 
not required to operate within confined spaces (n = 1923, 
80.36%, P < 0.001) and those who received occupational 
health training (n = 2213, 92.48%, P < 0.001) reported less 
decline in work efficiency. Workers using PPE (75.07%) 
experienced a higher percentage of productivity loss than 
those not using (44.79%).

Selection of critical variables
To minimize multicollinearity among the various predic-
tors, Lasso regression was employed for dimensionality 
reduction across all surveyed variables, facilitating the 
extraction of key features. From the initial set of vari-
ables, Lasso CV identified 27 significant factors including 
educational level, marital status, health status, tobacco 
use, the nature of physical activity at work, frequency 
of sleep difficulties, sleep quality, and fatigue levels. The 
optimal lambda value determined through cross-valida-
tion was 0.004. Notably, variables such as education level, 
use of PPE, access to air conditioning, and occupational 
health training were given substantial weights, as illus-
trated in Fig. 1.

Comparison of ML and DL models
Table  3 shows the AUC (95%CI), accuracy, sensitiv-
ity, specificity, F1-score, cutoff, and other indices for all 
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Variable Category Total (n = 2393) Labor productivity loss χ2/t P
No (n = 646) Yes (n = 1747)

Gender Female 460 (19.22) 181 (28.02) 279 (15.97) 44.089 < 0.001
Male 1933 (80.78) 465 (71.98) 1468 (84.03)

Nationality Han 2372 (99.12) 635 (98.30) 1737 (99.43) 6.928 0.008
Other 21 (0.88) 11 (1.70) 10 (0.57)

Age (Years, Mean ± SD) 38.07 ± 11.15 39.09 ± 10.97 38.57 ± 11.30 1.303 0.192
BMI (kg/m2, Mean ± SD) Underweight (BMI < 18.5) 17.45 ± 0.92 17.42 ± 0.88 17.46 ± 0.95 -0.206 0.837

Normal (18.5 ≤ BMI < 24.0) 21.73 ± 1.45 21.51 ± 1.51 21.81 ± 1.41 -3.217 0.001
Overweight (24.0 ≤ BMI < 28.0) 25.67 ± 1.11 25.73 ± 1.10 25.65 ± 1.12 0.903 0.367
Obese (BMI ≥ 28.0) 30.75 ± 4.34 30.12 ± 1.91 30.95 ± 4.87 -2.046 0.042

Educational attainment Secondary or below 314 (13.12) 140 (21.67) 174 (26.94) 72.105 < 0.001
High school 672 (28.08) 187 (28.95) 485 (27.76)
Technical/vocational college 740 (30.92) 160 (24.77) 580 (33.20)
Undergraduate 621 (25.95) 148 (22.91) 473 (27.08)
Postgraduate or above 46 (1.92) 11 (1.70) 35 (2.00)

Marital status Single 687 (28.71) 156 (24.15) 531 (30.40) 0.028*
Married 1650 (68.95) 473 (73.22) 1177 (67.37)
Divorced 50 (2.09) 15 (2.32) 35 (2.00)
Widowed 6 (0.25) 2 (0.31) 4 (0.23)

Health status Without chronic diseases 1871 (78.19) 542 (83.90) 1329 (76.07) 16.943 < 0.001
With chronic diseases 522 (21.81) 104 (16.10) 418 (23.93)

Medication use No 2163 (90.39) 597 (92.42) 1566 (89.64) 4.182 0.041
Yes 230 (9.61) 49 (7.59) 181 (10.36)

Smoking status Never 1404(58.67) 387(59.91) 1017(58.21) 0.641 0.887
Occasionally 143(5.98) 38(5.88) 105(6.01)
Daily 680(28.42) 179(27.71) 501(28.68)
Quit 166(6.94) 42(6.50) 124(7.10)

Alcohol consumption Never 115 (4.81) 29 (4.49) 86 (4.92) 14.251 0.027
1–2 times per year 453 (18.93) 121 (18.73) 332 (19.00)
Less than once per month 1180 (49.31) 346 (53.56) 834 (47.74)
Monthly 313 (13.08) 76 (11.77) 237 (13.57)
1–2 times per week 222 (9.28) 43 (6.66) 179 (10.25)
3–5 times per week 77 (3.22) 18 (2.79) 59 (3.38)
Daily 33 (1.38) 13 (2.01) 20 (1.15)

Annual income (CNY) < 10,000 35 (1.46) 7 (1.08) 28 (1.60) 24.293 < 0.001
10,000–29,900 42 (1.76) 11 (1.70) 31 (1.77)
30,000–59,900 118 (4.93) 44 (6.81) 74 (4.24)
60,000–99,900 335 (14.00) 117 (18.11) 218 (12.48)
100,000-149,900 707 (29.55) 193 (29.88) 514 (29.42)
150,000-299,900 861 (35.98) 208 (32.20) 653 (37.38)
≥ 3,000,000 295 (12.33) 66 (10.22) 229 (13.11)

Life satisfaction Very satisfied 475 (19.85) 152 (23.53) 323 (18.49) 0.016*
Mostly satisfied 1876 (78.40) 487 (75.39) 1389 (79.51)
Unsatisfied 36 (1.50) 5 (0.77) 31 (1.77)
Very unsatisfied 6 (0.25) 2 (0.31) 4 (0.23)

Insufficient energy to perform tasks (Weekly) Never 1986 (82.99) 581 (89.94) 1405 (80.42) 30.253 < 0.001
< 1 time 105 (4.39) 17 (2.63) 88 (5.04)
1–2 times 209 (8.73) 33 (5.11) 176 (10.07)
≥ 3 times 93 (3.89) 15 (2.32) 78 (4.47)

Frequency of feeling sleepy (Weekly) Never 1960 (81.91) 568 (87.93) 1392 (79.68) 22.676 < 0.001
< 1 time 92 (3.85) 18 (2.79) 74 (4.24)
1–2 times 220 (9.19) 35 (5.42) 185 (10.59)
≥ 3 times 121 (5.06) 25 (3.87) 96 (5.50)

Table 1  Demographic characteristics n (%) of surveyed petrochemical workers



Page 7 of 17Zhang et al. BMC Public Health         (2024) 24:3269 

models. The GNB model demonstrated the highest AUC 
of 0.722 (95%CI: 0.680–0.763) and achieved the best 
accuracy at 86.3% and sensitivity at 91.8%, although it 
had a relatively lower specificity of 71.5%, as shown in 
Table 3; Fig. 2. Similarly, the SVM model exhibited con-
sistent predictive ability, with an AUC of 0.693 (95%CI: 
0.647–0.738), and corresponding accuracy, sensitiv-
ity, specificity, and F1-score of 77.5%, 57.1%, 91.5%, and 
67.3%, respectively. The AUC values for RF, XGBoost, 
MLP, and LR models were 0.646 (95%CI: 0.601–0.690), 
0.643 (95%CI: 0.596–0.689), 0.692 (95%CI: 0.648–0.736), 
and 0.720 (95%CI: 0.677–0.763) respectively. Although 
XGBoost had the highest sensitivity at 97.9%, it exhibited 
a significantly lower specificity rate of 55.4%, indicating a 
potential bias.

In the validation set, GNB model continued to perform 
well, with an AUC of 0.681 (95%CI: 0.670–0.794) and 
an accuracy of 82.5%. Other models such as SVM, RF, 
XGBoost, MLP, and LR had AUC values of 0.662 (95%CI: 
0.594–0.730), 0.663 (95% CI: 0.598–0.729), 0.660 (95% 
CI: 0.594–0.727), 0.678 (95%CI: 0.613–0.743), and 0.687 
(95% CI: 0.623–0.751), respectively. The MLP model per-
formed moderately on the validation set, with an accu-
racy of 72.1% and an F1-score of 80.1%. Overall, the 
GNB model outperformed the others and was selected 
as the top choice for classification modeling, followed 
by the LR and SVM models. Consequently, the GNB 
model was chosen to build a SHAP model to enhance 
interpretability.

Visualization of feature importance
To assess the impact of various feature variables on 
our model’s output, we applied SHAP values to inter-
pret the GNB model used in this study. Features were 
ranked based on their average SHAP values in descend-
ing order of influence. As shown in Fig. 3, occupational 
health training was identified as the most significant 

factor affecting the productivity of petrochemical work-
ers under high temperatures (SHAP = -3.56), followed 
by exposure to noise (SHAP = 2.64) and the availability 
of protective measures (SHAP = -2.61). Protective fac-
tors that significantly preserved work efficiency under 
these conditions included occupational health training 
(SHAP = -3.56), implementation of protective measures 
(SHAP = -2.61), engaging in less physically demand-
ing roles (SHAP = -1.75), being female (SHAP = -1.37), 
taking a midday break (SHAP = -0.53), and belonging to 
higher income brackets (SHAP = -0.57). Conversely, fac-
tors that negatively impacted work efficiency included 
the lack of air conditioning (SHAP = 1.92), persistent 
noise (SHAP = 2.64), exposure to vibration (SHAP = 1.15), 
and exposure to dust and smoke (SHAP = 0.95). Addi-
tional detrimental influences included work-environ-
ment induced fatigue (SHAP = 0.49), poor sleep quality 
(SHAP = 0.98), involvement in physically exhausting tasks 
(SHAP = 0.81), longer weekly work hours (SHAP = 1.10), 
higher BMI (SHAP = 0.59), and working in confined 
spaces (SHAP = 0.80). These factors collectively contrib-
uted to significant reductions in labor productivity.

Discussion
Petrochemical industry plays a major role in global 
economy and growth [39]. The climate crisis highlights 
the urgent need to assess the impact of rising tempera-
tures on labor productivity loss. Results of this study 
suggested that heat exposure significantly reduced the 
efficiency of petrochemical workers, who are vital to 
meeting the growing energy demands. Using sophisti-
cated machine learning and deep learning techniques, 
this study investigated the self-reported productivity 
loss due to heat exposure among petrochemical work-
ers. Moreover, through SHAP value analysis of the best-
performing model (GNB), this study identified the key 
factors that compromise productivity when working 

Variable Category Total (n = 2393) Labor productivity loss χ2/t P
No (n = 646) Yes (n = 1747)

Sleep quality Good 1999(83.54) 567 (87.77) 1432 (81.97) 11.542 < 0.001
Poor 394(16.465) 79 (12.23) 315 (18.03)

Sleep onset difficulty (Weekly) Rarely 2001 (83.62) 570 (88.24) 1431 (81.91) 16.917 < 0.001
< 1 time 72 (3.01) 20 (3.10) 52 (2.98)
1–2 times 320 (13.37) 56 (8.67) 264 (15.11)

Noontime break habit No break 529 (22.11) 164 (25.39) 365 (20.89) 5.775 0.056
Seasonal (Typically in summer) 224 (9.36) 61 (9.44) 163 (9.33)
All-year round 1640 (68.53) 421 (65.17) 1219 (69.78)

Physical activity level Sedentary 1445 (60.38) 444 (68.73) 1001 (57.30) < 0.001*
Slightly active 15 (0.63) 7 (1.08) 8 (0.46)
Moderately active 918 (38.36) 194 (30.03) 724 (41.44)
Vigorously active 15 (0.63) 1 (0.16) 14 (0.80)

Note: ‘*’ indicates the p-values calculated using Fisher’s exact test

Table 1  (continued) 



Page 8 of 17Zhang et al. BMC Public Health         (2024) 24:3269 

in hot environments: heat-related health training, the 
implementation of protective measures, and the num-
ber of work hours per week. Findings of this study may 
provide valuable insights for the development of targeted 
strategies to bolster workers heat resilience and maintain 
sustained productivity amidst the challenges posed by a 
changing climate.

Model construction and evaluation
This research applied an array of machine learning, deep 
learning, and conventional statistical methods to con-
struct various models for the investigation of factors 
affecting the work efficiency of petrochemical work-
ers exposed to occupational high temperatures. Our 

findings suggested that each of the six models exhibited 
commendable authenticity, reliability, and predictive 
effectiveness, with the GNB model showing the highest 
efficacy, followed by LR, SVM, and MLP, while the RF 
model showed the lowest efficacy in this study. The supe-
rior performance of the GNB model in this study aligns 
with the findings of Taghizadeh et al. [40]. Similarly, Lips 
et al. found the LR model outperformed the MLP algo-
rithm [41], which is consistent with our results. Although 
the MLP model has strong non-linear mapping, self-
learning, and adaptive capabilities, Boudreault et al. 
noted that it struggled during summertime modeling 
[18], a finding echoed by our research. Moreover, Bou-
dreault et al. observed improved calibration with larger 

Table 2  Occupational information n (%) of surveyed petrochemical workers
Variable Category Total (n = 2393) Labor productivity loss χ2/t P

No (n = 646) Yes (n = 1747)
Nature of work Petroleum refining 381 (15.92) 89 (13.78) 292 (16.71) 7179 < 0.001

Aromatics and olefin production 407 (17.01) 76 (11.65) 331 (18.90)
Storage and transportation 456 (19.06) 117 (18.11) 339 (19.41)
Service operation 1149 (48.02) 364 (56.35) 785 (44.93)

Length of service (Years, Mean ± SD) 14.61 ± 3.77 13.91 ± 11.27 15.28 ± 12.15 -2.043 0.041
Weekly working hours (Hours, Mean ± SD) 46.74 ± 16.59 44.45 ± 7.62 48.92 ± 6.55 -2.659 0.048
Occupational classification Frontline workers (External Ops) 1589 (66.40) 425 (65.79) 1164 (66.63) 43.303 < 0.001

Frontline workers (Internal Ops) 305 (12.75) 78 (12.07) 227 (12.99)
Management/supervisory 351 (14.67) 107 (16.56) 244 (13.97)
Administrative staff 148 (6.19) 36 (5.57) 112 (6.41)

Greenness at workplace No 246 (10.28) 74 (11.46) 172 (9.85) 1.325 0.250
Yes 2147 (89.72) 572 (88.55) 1575 (90.16)

Heat control measures Electric fan & air conditioning 313 (13.08) 106 (16.41) 207 (11.85) 10.132 0.017
Electric fan only 84 (3.51) 26 (4.03) 58 (3.32)
Air conditioning only 1513 (63.23) 395 (61.15) 1118 (63.99)
None 483 (20.18) 119 (18.42) 364 (20.84)

Vibration exposure No 1397 (58.38) 471 (72.91) 926 (53.01) 76.902 < 0.001
Yes 996 (41.62) 175 (27.09) 821 (46.99)

Noise exposure No 865 (36.15) 335 (51.86) 530 (30.34) 94.625 < 0.001
Yes 1528 (63.85) 311 (48.14) 1217 (69.66)

Dust and fumes exposure No 1645 (68.74) 491 (76.01) 1154 (66.06) 21.730 < 0.001
Yes 748 (31.26) 155 (23.99) 593 (33.94)

Oil mist exposure No 2166 (90.51) 611 (94.58) 1555 (89.01) 17.055 < 0.001
Yes 227 (9.49) 35 (5.42) 192 (10.99)

Physical strain level Very severe 7 (0.29) 0 (0.000) 7 (0.40) < 0.001*
Severe 143 (5.98) 17 (2.63) 126 (7.21)
Moderate 1238 (51.73) 259 (40.09) 979 (56.04)
Mild 889 (37.15) 317 (49.07) 572 (32.74)
None 116 (4.85) 53 (8.20) 63 (3.61)

Operate in confined space Not required 1923 (80.36) 560 (86.69) 1363 (78.02) 22.756 < 0.001
Occasionally (1–2 times per month) 424 (17.72) 76 (11.77) 348 (19.92)
Often(at least 3 times per week) 46 (1.92) 10 (1.55) 36 (2.06)

Occupational health training No 180 (7.52) 86 (13.31) 94 (5.38) 42.656 < 0.001
Yes 2213 (92.48) 560 (86.69) 1653 (94.62)

Use of PPE No 163 (6.81) 90 (13.93) 73 (4.18) 70.677 < 0.001
Yes 2230 (93.19) 556 (86.07) 1674 (95.82)

Note: *’ indicates the p-values calculated using Fisher’s exact test
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datasets, suggesting the need for further validation to 
assess performance. Marien et al.‘s investigation into the 
annual modeling of myocardial infarction using various 
machine learning and deep learning approaches found 
that the MLP model’s efficacy surpassed that of RF [42], 
paralleling our study’s outcome. The RF model, which 
seeks to maximize predictive accuracy by reducing vari-
ance rather than bias, has been recognized for its strong 
predictive capacity, as identified by Stretch et al. RF [43], 
corroborating the results of our study.

Analysis of influencing factors
Heat-related training
This study found that workers who received adequate 
occupational health training were better equipped to 
manage heat stress when working in high-temperature 
environments, thereby reducing heat-attributed produc-
tivity loss. Compliance with heat prevention measures is 
crucial for mitigating the adverse effects of temperature 
discomfort on productivity [44]. Workers exposed to 
high temperatures may experience various health issues, 
including heat exhaustion [45], stroke [46], and neph-
rolithiasis [47]. Proactive protective strategies—such as 

Table 3  Performance comparison of different models in the training and validation sets
Model AUC (95%CI) Accuracy Sensitivity Specificity F1-Score Cutoff
Training Set
  SVM 0.693 (0.647–0.738) 0.775 0.571 0.915 0.673 0.770
  RF 0.646 (0.601–0.690) 0.760 0.774 0.750 0.750 0.650
  XGBoost 0.643 (0.596–0.689) 0.727 0.979 0.554 0.745 0.678
  GNB 0.722 (0.680–0.763) 0.863 0.918 0.715 0.642 0.869
  MLP 0.692 (0.648–0.736) 0.738 0.769 0.653 0.811 0.699
  LR 0.720 (0.677–0.763) 0.680 0.692 0.672 0.638 0.724
Validation set
  SVM 0.662 (0.594–0.730) 0.605 0.599 0.586 0.655 0.768
  RF 0.663 (0.598–0.729) 0.674 0.579 0.574 0.654 0.620
  XGBoost 0.660 (0.594–0.727) 0.616 0.711 0.470 0.743 0.894
  GNB 0.681 (0.670–0.794) 0.825 0.812 0.713 0.624 0.851
  MLP 0.678 (0.613–0.743) 0.721 0.762 0.624 0.801 0.678
  LR 0.687 (0.623–0.751) 0.680 0.592 0.692 0.672 0.638

Fig. 1  Lasso regression feature selection for temperature discomfort and labor productivity. (A) Spatial distribution of Lasso coefficients for 27 predictors 
was depicted by lines of varying colors, each representing a distinct predictor. (B) Lasso coefficient paths were plotted as functions of the log-transformed 
regularization parameter (lambda). Optimal model parameters associated with specific lambda values were highlighted with red markers.
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Fig. 2 (See legend on next page.)
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wearing breathable, moisture-wicking and heat-dissipat-
ing work attire; taking regular breaks for hydration; and 
maintaining moderate work intensity—can effectively 
prevent and mitigate these health issues due to tempera-
ture discomfort.

Moreover, reinforcing occupational health training 
and protective measures is vital for long-term vocational 
development. A randomized controlled trial by Harsini 
et al. revealed that approximately 90% of workplace acci-
dents were due to unsafe behaviors [48], underscoring 
the urgent need for immediate implementation of robust 
occupational health education initiatives. Workers con-
sistently exposed to high-temperature environments are 
prone to cumulative health effects from ongoing heat 
exposure. However, through occupational health edu-
cation, they can learn how to reduce and manage the 
impact of heat exposure, thus reducing or preventing 
the exacerbation of potential health issues. Therefore, a 
strong commitment to occupational safety and health 
management in the workplace is both essential and 
urgent.

Duration of weekly working hours
We found the duration of weekly working hours is a sig-
nificant determinant influencing labor productivity loss. 
Extended working hours and work intensity can exac-
erbate the physical strain on petrochemical workers, 
thereby negatively affecting their job performance and 
productivity. Evidence has shown an inverse relationship 
between the duration of vacation time and the incidence 
of occupational injuries in high-temperature jobs [49]. 
Similarly, Li’s study demonstrated an inverse correlation 
between working hours and labor productivity loss under 
high temperatures [50], aligning with the findings of our 
research. Potential factors contributing to this relation-
ship include: heightened physical and mental exhaustion 
[6], reduced attention, increased psychological burden 
[51], and heightened psychological stress, all of which 
can compromise work efficiency in hot conditions.

Moreover, temperature discomfort may diminish the 
human body’s physiological adaptability, affecting func-
tions like thermoregulation and cardiovascular systems 
[52], further impacting the workers’ operational state 
and efficiency. Therefore, in management practices, it 
is essential to arrange reasonable working hours, avoid 
excessively long continuous work periods, and provide 

adequate rest and adjustment measures to enhance the 
efficiency and health of workers in high-temperature 
environments.

Co-exposure to other occupational hazards
Petrochemical workers are generally exposed to mul-
tiple types of occupational hazards simultaneously in 
the workplace. Our findings indicated that the efficiency 
of petrochemical workers exposed to high tempera-
tures was also influenced by occupational hazards such 
as noise, vibration, dust, and fumes encountered during 
production operations. Exposure to these occupational 
hazards not only has detrimental effects on workers’ 
health [53], such as damage to the eardrum from noise 
[54], impairment of the nervous and circulatory systems 
from vibrations [55], respiratory diseases, but also lead 
to psychological fatigue, anxiety, and stress responses, 
which in turn, can impair workers’ concentration and 
state of mind [56]. Prolonged exposure to dust and fumes 
may also cause emotional fluctuations and discomfort 
among workers [56], further diminishing work efficiency.

The combined effects of occupational hazards such as 
noise, dust, fumes, and vibration, along with heat, may 
create a complex risk environment that can significantly 
impact petrochemical workers’ health and efficiency. 
Workers exposed to multiple hazards are more vulnera-
ble because their bodies are under greater stress, making 
it harder to regulate temperature and maintain hydra-
tion [57]. In noisy and hot environments, workers may 
experience higher levels of discomfort, leading to quicker 
fatigue and reduced concentration. Inability to commu-
nicate effectively in a noisy environment can also pre-
vent timely interventions for heat-related illnesses. Dust 
particles are more likely to be inhaled in hot conditions 
due to increased breathing rates, which may aggravate 
respiratory conditions [58]. Heat can increase the vola-
tility of certain chemicals, resulting in increased inhala-
tion and absorption of toxic substances [59]. The physical 
strain from operating vibrating machinery is amplified in 
hot conditions, leading to faster onset of fatigue, reduced 
productivity, and a higher likelihood of mistakes and 
accidents. Therefore, effective management strategies 
and technical measures, including improving the work 
environment, providing essential personal protective 
equipment, conducting health monitoring, and offering 
relevant training, are necessary to safeguard the health 

(See figure on previous page.)
Fig. 2  ROC curves of SVM, RF, XGBoost, GNB, MLP, and LR models across training, testing, and validation sets. This figure shows the assessment of six 
prominent machine learning models using their ROC curves and AUC values across three distinct dataset partitions: training, testing, and validation. The 
evaluated models include Support Vector Machine (SVM), Random Forest (RF), Extreme Gradient Boosting (XGB), Gaussian Naive Bayes (GNB), Multilayer 
Perceptron (MLP), and Logistic Regression (LR). The ROC curves represent a graphical comparison of the true positive rate (sensitivity) against the false 
positive rate (1-specificity) at various threshold levels, offering an aggregate measure of model performance throughout all classification thresholds. A 
higher AUC value signifies a model’s superior capability to differentiate between classes accurately. This comparative visualization facilitates a critical 
analysis of each model’s predictive efficiency and generalizability across different data segments, underscoring the importance of model selection in the 
application of machine learning for classification tasks
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Fig. 3  SHAP summary plot for GNB model of petrochemical workers’ productivity loss. (A) SHAP value impact on petrochemical workers’ productivity: 
This plot illustrates the relationship between feature-wise SHAP values and the workers’ productivity. Features with greater SHAP values exert a more 
significant influence on productivity enhancement, depicted by a transition from blue (lower impact) to red (higher impact) across the axis. (B) Feature 
importance landscape: Exhibits the ranked importance of features based on the mean absolute SHAP values, providing a quantitative analysis of each 
feature’s contribution to predictive accuracy
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and work efficiency of petrochemical workers in high-
temperature environments.

Personal characteristics
Furthermore, we found personal characteristics including 
education level, gender, sleep quality, marital status, dis-
ease presence, BMI, and annual household income have 
significantly impacted workers’ productivity. These find-
ings underscored the potential influences of individual 
traits on job performance. Regarding gender differences, 
this study suggested that male workers were more sus-
ceptible to the impacts of high ambient temperatures, 
which is supported by McInnes in earlier research [60]. 
Firstly, men often engage in more physically demand-
ing tasks than women [61], requiring increased physical 
exertion and endurance. In high-temperature environ-
ments, heat stress exacerbates the body’s burden, making 
them more prone to fatigue and loss of energy. Secondly, 
males are physiologically more sensitive to high tempera-
tures. Compared to females, males were proved to have 
poorer temperature regulation capabilities [62, 63], mak-
ing them more vulnerable to heat-related illnesses. This 
may lead to discomfort and fatigue in high-temperature 
environments, thereby affecting work efficiency. Addi-
tionally, males exhibit higher sweat production under 
heat stress conditions [64]. While sweating helps dis-
sipate heat, excessive sweating can result in fluid loss 
and dehydration, ultimately impacting bodily functions 
and concentration [65]. These factors may contribute to 
decreased work efficiency among male petrochemical 
workers in high-temperature environments. Neverthe-
less, it is important to note that these observations rep-
resent general trends, and individual variability persists. 
The implementation of adequate protective protocols, 
judicious work-rest cycles, and comprehensive health 
education is essential to mitigate the impact of high-tem-
perature conditions on male petrochemical workers.

Regarding BMI, this study observed that workers who 
experienced productivity loss exhibited higher BMI lev-
els compared to those without productivity loss, both 
in the normal BMI group and the obese group. Li et al. 
indicated that BMI could reduce labor productivity in 
hot environments [50], which is consistent with the 
results of this study. This finding aligns with research by 
Giersch et al., which documented a positive correlation 
between exertional heat stress (EHS) and BMI, indicating 
a 3% increase in the risk of EHS for every unit increase 
in BMI [66]. The reasons behind these observations 
could be multifactorial. One possible explanation is the 
physiological burden imposed by higher BMI, which can 
exacerbate the cardiovascular [67] and metabolic strain 
[68] during physical exertion, thereby reducing work 
efficiency. Additionally, individuals with higher BMI 
may have a reduced capacity for heat dissipation [69], 

increasing their susceptibility to heat-related stress and 
its subsequent impact on productivity. Biomechanical 
inefficiencies associated with obesity might also contrib-
ute to quicker fatigue onset [70], impacting overall work 
performance. Further research is essential to elucidate 
the detailed mechanisms and explore potential strategic 
interventions to mitigate these effects.

Interestingly, the results of univariate analysis in this 
study indicated that alcohol consumption was associated 
with productivity loss among workers. However, work-
ers who drank almost daily exhibited a lower incidence 
of productivity loss compared to those who never drank. 
Theoretically, alcohol can exacerbate heat strain and sub-
sequently reduce work efficiency [57]. However, multiple 
factors in the workplace are associated with productiv-
ity loss, such as job requirements and heat control mea-
sures. Most participants who drank daily were frontline 
workers. Probably, they did not report the truth as alco-
hol drinking is prohibited in the workplace, especially 
for petrochemical workers. In addition, only 33 workers 
reported “drink daily” in this study. The relatively small 
sample size may also contribute to this phenomenon. If 
divide the alcohol consumption into two options (less 
than once per month, at least once per month), we found 
workers who drank at least once per month had a higher 
percentage of productivity loss compared to those drank 
less frequently. Since frontline workers tend to have 
higher physical workloads, they are more vulnerable to 
heat strain and related productivity loss [71]. Therefore, 
further investigation into the role of occupational set-
tings and responsibilities may provide deeper insights 
into strategies that can mitigate productivity loss because 
of alcohol consumption.

With respect to the influence of sleep quality on work 
efficiency, research by Tawatsupa et al. has demonstrated 
that sleep quality in hot environments plays a crucial 
role in overall productivity [72], which aligns with the 
findings of the current study. Adequate and restorative 
sleep is essential for the recovery and regulation of all 
body systems [73]. In high-temperature conditions, pet-
rochemical plant workers may experience increased 
physical fatigue and dehydration. Good quality sleep is 
imperative for restoring physical energy, maintaining 
physiological stability, and preserving emotional bal-
ance and cognitive functioning. Conversely, poor sleep 
can exacerbate physical exhaustion, reduce stamina, and 
lead to heightened anxiety, increased stress, and greater 
emotional variability [74], all contributing to suboptimal 
mental states during work hours and difficulty in sustain-
ing work efficiency.

Limitations
This study has certain limitations that should be acknowl-
edged. First, the study was conducted in Quangang, a 
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region characterized by a subtropical climate, which may 
limit the generalizability of the findings to areas with dif-
ferent climatic conditions. Second, thermal comfort is 
essentially determined by external climatic conditions, 
work clothes, use of PPE, and individual’s adaptabil-
ity. In this study, heat exposure and other occupational 
hazards exposure information were collected through 
a self-reported questionnaire survey. This is a poten-
tial risk of recall bias in terms of exposure level. More-
over, we did not ask workers the specific types of PPE 
and work clothes they wore in the workplace. Different 
types of PPE and work clothes may have different effects 
on thermal comfort and heat-related labor productivity 
loss, which further research is warranted. Third, certain 
medications (e.g. diuretics, beta-blockers, anticholiner-
gics, and antipsychotics) can modulate thermoregulatory 
function, resulting in excess physiological strain and pre-
disposing workers to adverse health outcomes [75]. The 
impact of different medications on heat-related produc-
tivity loss may vary, depending on multiple factors such 
as the type of medication, dosage and duration of use. 
In this survey, however, we did not collect this specific 
information.

Conclusion
This study highlights a significant decline in work effi-
ciency among petrochemical workers due to heat expo-
sure in the workplace. To mitigate the likely increasing 
productivity loss attributed to heat in the context of 
climate change, it is imperative to consider several pro-
active measures. These may include improving occu-
pational health training, implementing rigorous noise 
pollution control measures, establishing climate-con-
trolled work environments, adapting labor-intensive 
tasks, and strengthening educational programs within 
the petrochemical industry. Prioritizing these initiatives 
is warranted to better safeguard the well-being and pro-
ductivity of workers in the petrochemical sector under 
challenging environmental conditions.

Abbreviations
SVM	� Support Vector Machine
RF	� Random Forest
XGBoost	� eXtreme Gradient Boosting
GNB	� Gaussian Naive Bayes
MLP	� Multilayer Perceptron
LR	� Logistic Regression
SHAP	� SHapley Additive exPlanations
ML	� Machine Learning
DL	� Deep Learning

Supplementary Information
The online version contains supplementary material available at ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​
g​/​1​0​.​1​1​8​6​/​s​1​2​8​8​9​-​0​2​4​-​2​0​7​1​3​-​4​​​​​.​​

Supplementary Material 1

Acknowledgements
The authors would like to thank the Minnan Branch of the First Affiliated 
Hospital of Fujian Medical University for their support during the survey. All 
survey participants and the interviewers (Wenzhu Chen, Suqun Chen, Ying 
Xu, Xiaoyan Zeng, Yian Guo, Sufen Ke, Suyu Chen, and Meimei Lin) are greatly 
appreciated for their contributions.

Author contributions
YZ conducted data analysis and drafted the manuscript. YC and QL conducted 
the majority of the field work, including data collection and initial analyses. 
SD contributed to the interpretation of results and manuscript revisions. YY 
and ZZ assisted in the field investigations and provided critical revisions to the 
draft. JC, ZX, and JW were involved in the data collection as well as offering 
substantive suggestions for the manuscript. WZ participated extensively in 
designing research methodology and supervising the field investigations. 
LW supported the study design and execution, and provided guidance on 
statistical analysis. WY contributed significantly to the manuscript concept, 
reviewing literature, and editing the manuscript content for important 
intellectual content. JX, as the corresponding author, played a pivotal role 
in the conception of the article, oversaw the entire project, contributed to 
manuscript writing and revisions, and undertook additional data collection. All 
authors discussed the results, commented on the manuscript at all stages, and 
read and approved the final manuscript.

Funding
This study was supported by the Minjiang Scholar Start-up Research Fund 
of Fujian Province (Grant No. 2019-9202001001) and 2021 Natural Science 
Foundation of Fujian Province of China (2021J01722).

Data availability
Data is provided within the manuscript or supplementary information files. 
The datasets are available from the corresponding author upon reasonable 
request.

Declarations

Ethics approval and consent to participate
The study protocol was approved by the Ethics Committee of Fujian Medical 
University, with approval number (2022–111). All participants provided 
written informed consents before participating in the study. The research was 
conducted in accordance with the ethical guidelines and principles outlined 
in the Declaration of Helsinki.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Department of Preventive Medicine, School of Public Health, Fujian 
Medical University; and Key Laboratory of Environment and Health, Fujian 
Province University, 1 North Xue-Fu Rd, Minhou, Fuzhou 350122, Fujian 
Province, China
2Department of Epidemiology and Health Statistics, School of Public 
Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
3Minnan Branch of the First Affiliated Hospital of Fujian Medical University, 
Quangang, Quanzhou 362100, Fujian Province, China
4School of Public Health, The University of Adelaide, North Terrace 
Campus, Adelaide, South Australia 5005, Australia

Received: 27 May 2024 / Accepted: 12 November 2024

References
1.	 Tong R, Yang Y, Shao G, Zhang Y, Dou S, Jiang W. Emission sources and proba-

bilistic health risk of volatile organic compounds emitted from production 
areas in a petrochemical refinery in Hainan, China. Hum Ecol Risk Assessment: 
Int J. 2020;26(5):1407–27. https:/​/doi.or​g/10.10​80/1​0807039.2019.1579049

https://doi.org/10.1186/s12889-024-20713-4
https://doi.org/10.1186/s12889-024-20713-4
https://doi.org/10.1080/10807039.2019.1579049


Page 15 of 17Zhang et al. BMC Public Health         (2024) 24:3269 

2.	 Tong LZ, Pu ZM, Chen K, Yi JJ. Sustainable maintenance supplier performance 
evaluation based on an extend fuzzy PROMETHEE II approach in petrochemi-
cal industry. Journal of Cleaner Production. 2020; 273. httpshttps://doi.
org/10.1016/j.jclepro.2020.122771

3.	 Sevan G, Pouya M, Ehsan A, Hoda N, Abbas Abbas R, Hamid M. Biological 
treatment of toxic refinery spent sulfidic caustic at low dilution by sulfur-
oxidizing fungi. Journal of environmental chemical engineering. 2018. 
httpshttps://doi.org/10.1016/j.jece.2018.04.026

4.	 Zhang Y, Liu Y, Li ZX, Liu X, Chen QF, Qin JY, Liao QL, Du R, Deng QF, Xiao YM, 
et al. Effects of coexposure to noise and mixture of toluene, ethylbenzene, 
xylene, and styrene (TEXS) on hearing loss in petrochemical workers of 
southern China. Environ Sci Pollut Res. 2023;30(11):31597–607. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​
/​1​0​.​1​0​0​7​/​s​1​1​3​5​6​-​0​2​2​-​2​4​4​1​4​-​6​​​​​​​

5.	 Rathod SB, Sorte SR, Patel S. The Effect of High Temperature on Cardiovas-
cular autonomic function tests in steel plant furnace worker. Indian J Occup 
Environ Med. 2021;25(2):67–71. https:/​/doi.or​g/10.41​03/i​joem.IJOEM_193_20

6.	 Martínez-Solanas È, López-Ruiz M, Wellenius GA, Gasparrini A, Sunyer J, Bena-
vides FG, Basagaña X. Evaluation of the impact of ambient temperatures on 
Occupational Injuries in Spain. Environ Health Perspect. 2018;126(6):067002. 
https:/​/doi.or​g/10.12​89/e​hp2590

7.	 Wang L, Yu M, Zhang S, Li X, Yuan J. Associations of Occupational Heat stress 
and noise exposure with carotid atherosclerosis among Chinese steelwork-
ers: a cross-sectional survey. Int J Environ Res Public Health. 2021;19(1). https:/​
/doi.or​g/10.33​90/i​jerph19010024

8.	 Zhou F, Shrestha A, Mai S, Tao Z, Li J, Wang Z, Meng X. Relationship between 
occupational noise exposure and hypertension: a cross-sectional study in 
steel factories. Am J Ind Med. 2019;62(11):961–8. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​0​2​/​a​j​i​m​
.​2​3​0​3​4​​​​​​​

9.	 Jafari MJ, Pirposhteh EA, Dehghan SF, Khodakarim S, Jafari M. Relationship 
between heat stress exposure and some immunological parameters among 
foundry workers. Int J Biometeorol. 2020;64(5):853–61. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​0​
7​/​s​0​0​4​8​4​-​0​2​0​-​0​1​8​7​4​-​4​​​​​​​

10.	 Borg MA, Xiang J, Anikeeva O, Ostendorf B, Varghese B, Dear K, Pisaniello D, 
Hansen A, Zander K, Sim MR, et al. Current and projected heatwave-attrib-
utable occupational injuries, illnesses, and associated economic burden in 
Australia. Environ Res. 2023;236(Pt 2):116852. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​e​n​v​r​e​s​.​
2​0​2​3​.​1​1​6​8​5​2​​​​​​​

11.	 Borg MA, Xiang J, Anikeeva O, Pisaniello D, Hansen A, Zander K, Dear K, Sim 
MR, Bi P. Occupational heat stress and economic burden: a review of global 
evidence. Environ Res. 2021;195:110781. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​e​n​v​r​e​s​.​2​0​2​
1​.​1​1​0​7​8​1​​​​​​​

12.	 Dasgupta S, van Maanen N, Gosling SN, Piontek F, Otto C, Schleussner CF. 
Effects of climate change on combined labour productivity and supply: an 
empirical, multi-model study. Lancet Planet Health. 2021;5(7):E455–65.

13.	 Shen RZ, Ye ZC, Gao J, Hou YP, Ye HC. Climate change risk perception in 
global: correlation with petroleum and liver disease: a meta-analysis. Ecotoxi-
col Environ Saf. 2018;166:453–61. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​e​c​o​e​n​v​.​2​0​1​8​.​0​9​.​0​8​
0​​​​​​​

14.	 Shin-Li L. Integrating heuristic time series with modified grey forecasting 
for renewable energy in Taiwan. Renewable Energy. 2019. httpshttps://doi.
org/10.1016/j.renene.2018.08.092

15.	 Wang Z, Han YM, Li CF, Geng ZQ, Fan JZ. Input-output networks consider-
ing graphlet-based analysis for production optimization: Application in 
ethylene plants. Journal of Cleaner Production. 2021; 278. httpshttps://doi.
org/10.1016/j.jclepro.2020.123955

16.	 Yang L, Liu X, Zhu W, Zhao L, Beroza GC. Toward improved urban earthquake 
monitoring through deep-learning-based noise suppression. Sci Adv. 2022; 
8(15):eabl3564. httpshttps://doi.org/10.1126/sciadv.abl3564

17.	 Lee M, Yeo NY, Ahn HJ, Lim JS, Kim Y, Lee SH, Oh MS, Lee BC, Yu KH, Kim C. 
Prediction of post-stroke cognitive impairment after acute ischemic stroke 
using machine learning. Alzheimers Res Ther. 2023;15(1):147. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​
1​0​.​1​1​8​6​/​s​1​3​1​9​5​-​0​2​3​-​0​1​2​8​9​-​4​​​​​​​

18.	 Boudreault J, Campagna C, Chebana F. Machine and deep learning for mod-
elling heat-health relationships. Sci Total Environ. 2023;892:164660. ​h​t​t​​p​s​:​/​​/​d​o​​
i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​s​c​i​t​o​t​e​n​v​.​2​0​2​3​.​1​6​4​6​6​0​​​​​​​

19.	 Li X, Zhao Y, Zhang D, Kuang L, Huang H, Chen W, Fu X, Wu Y, Li T, Zhang J, et 
al. Development of an interpretable machine learning model associated with 
heavy metals’ exposure to identify coronary heart disease among US adults 
via SHAP: findings of the US NHANES from 2003 to 2018. Chemosphere. 
2023;311(Pt 1):137039. https:/​/doi.or​g/10.10​16/j​.chemosphere.2022.137039

20.	 Ogata S, Takegami M, Ozaki T, Nakashima T, Onozuka D, Murata S, Nakaoku 
Y, Suzuki K, Hagihara A, Noguchi T, et al. Heatstroke predictions by machine 

learning, weather information, and an all-population registry for 12-hour 
heatstroke alerts. Nat Commun. 2021;12(1):4575. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​
4​6​7​-​0​2​1​-​2​4​8​2​3​-​0​​​​​​​

21.	 Sun DL, Gu QY, Wen HJ, Xu JH, Zhang YL, Shi SX, Xue MM, Zhou XZ. Assess-
ment of landslide susceptibility along mountain highways based on different 
machine learning algorithms and mapping units by hybrid factors screening 
and sample optimization. Gondwana Res. 2023;123:89–106. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​
0​.​1​0​1​6​/​j​.​g​r​.​2​0​2​2​.​0​7​.​0​1​3​​​​​​​

22.	 Hu JC, Szymczak S. A review on longitudinal data analysis with random forest. 
Brief Bioinform. 2023;24(2). https:/​/doi.or​g/10.10​93/b​ib/bbad002

23.	 Jannusch K, Dietzel F, Bruckmann NM, Morawitz J, Boschheidgen M, Minko 
P, Bittner AK, Mohrmann S, Quick HH, Herrmann K, et al. Eur J Nucl Med Mol 
Imaging. 2023. https:/​/doi.or​g/10.10​07/s​00259-023-06513-9. Prediction of 
therapy response of breast cancer patients with machine learning based on 
clinical data and imaging data derived frombreast < SUP > 18 F FDG-PET/MRI

24.	 Ali R, Hussain J, Lee SW. Multilayer perceptron-based self-care early prediction 
of children with disabilities. Digit Health. 2023;9:20552076231184054. ​h​t​t​​p​s​:​/​​/​
d​o​​i​.​​o​r​g​/​1​0​.​1​1​7​7​/​2​0​5​5​2​0​7​6​2​3​1​1​8​4​0​5​4​​​​​​​

25.	 Xiong Y, Ma Y, Ruan L, Li D, Lu C, Huang L. Comparing different machine 
learning techniques for predicting COVID-19 severity. Infect Dis Poverty. 
2022;11(1):19. https:/​/doi.or​g/10.11​86/s​40249-022-00946-4

26.	 Quangang Petrochemical Industrial Park. ​h​t​t​​p​:​/​/​​w​w​w​​.​e​​n​q​u​a​n​z​h​o​u​.​c​o​m​/​2​0​1​
9​-​1​1​/​1​9​/​c​_​4​2​5​6​3​7​.​h​t​m​#​:​~​:​t​e​x​t​=​Q​u​a​n​g​a​n​g​​​​​P​e​t​r​o​c​h​e​m​i​c​a​l​%​2​0​I​n​d​u​s​t​r​i​a​l​%​2​0​P​a​
r​k​%​2​0​i​s​,​b​a​s​e​%​2​0​i​n​%​2​0​Q​u​a​n​z​h​o​u​%​2 C%20Fujian%20province.

27.	 Wang B, Wu C, Kang LG, Huang L, Pan W. What are the new challenges, goals, 
and tasks of occupational health in China’s Thirteenth five-year plan (13th 
FYP) period? J Occup Health. 2018;60(3):208–28. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​5​3​9​/​j​o​h​.​
2​0​1​7​-​0​2​7​5​-​R​A​​​​​​​

28.	 de Vet HCW, Mokkink LB, Mosmuller DG, Terwee CB. Spearman-Brown 
prophecy formula and Cronbach’s alpha: different faces of reliability and 
opportunities for new applications. J Clin Epidemiol. 2017;85:45–9. ​h​t​t​​p​s​:​/​​/​d​o​​
i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​j​c​l​i​n​e​p​i​.​2​0​1​7​.​0​1​.​0​1​3​​​​​​​

29.	 Zhang Y, Xu J, Zhang C, Zhang X, Yuan XL, Ni WQ, Zhang HM, Zheng YJ, Zhao 
ZG. Community screening for dementia among older adults in China: a 
machine learning-based strategy. BMC Public Health. 2024;24(1). ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​
r​g​/​1​0​.​1​1​8​6​/​s​1​2​8​8​9​-​0​2​4​-​1​8​6​9​2​-​7​​​​​​​

30.	 Mao YK, Weng JY, Xie QY, Wu LD, Xuan YL, Zhang J, Han J. Association 
between dietary inflammatory index and stroke in the US population: 
evidence from NHANES 1999–2018. BMC Public Health. 2024;24(1). ​h​t​t​​p​s​:​/​​/​d​o​​
i​.​​o​r​g​/​1​0​.​1​1​8​6​/​s​1​2​8​8​9​-​0​2​3​-​1​7​5​5​6​-​w​​​​​​​

31.	 Mueller-Using S, Feldt T, Sarfo FS, Eberhardt KA. Factors associated with 
performing tuberculosis screening of HIV-positive patients in Ghana: LASSO-
based predictor selection in a large public health data set. BMC Public Health. 
2016;16. https:/​/doi.or​g/10.11​86/s​12889-016-3239-y

32.	 Teng F, Fan W, Luo Y, Xu S, Gong H, Ge R, Zhang X, Wang X, Ma L. A risk 
prediction model by LASSO for Radiation-Induced Xerostomia in patients 
with nasopharyngeal carcinoma treated with Comprehensive Salivary gland-
sparing helical tomotherapy technique. Front Oncol. 2021;11:633556. ​h​t​t​​p​s​:​/​​/​
d​o​​i​.​​o​r​g​/​1​0​.​3​3​8​9​/​f​o​n​c​.​2​0​2​1​.​6​3​3​5​5​6​​​​​​​

33.	 Tay JK, Narasimhan B, Hastie T. Elastic Net Regularization paths for all general-
ized Linear models. J Stat Softw. 2023;106(1):1–31. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​8​6​3​7​/​j​s​
s​.​v​1​0​6​.​i​0​1​​​​​​​

34.	 Gorji HT, Wilson N, VanBree J, Hoffmann B, Petros T, Tavakolian K. Using 
machine learning methods and EEG to discriminate aircraft pilot cognitive 
workload during flight. Sci Rep. 2023;13(1). ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​
2​3​-​2​9​6​4​7​-​0​​​​​​​

35.	 Chen M, Yin Z. Classification of Cardiotocography based on the Apriori 
Algorithm and Multi-model Ensemble Classifier. Front Cell Dev Biol. 
2022;10:888859. https:/​/doi.or​g/10.33​89/f​cell.2022.888859

36.	 Bustos A, Payá A, Torrubia A, Jover R, Llor X, Bessa X, Castells A, Carracedo 
Á, Alenda C. xDEEP-MSI: Explainable Bias-rejecting microsatellite instabil-
ity Deep Learning System in Colorectal Cancer. Biomolecules. 2021;11(12). 
https:/​/doi.or​g/10.33​90/b​iom11121786

37.	 Wang HJ, Liang QX, Hancock JT, Khoshgoftaar TM. Feature selection strate-
gies: a comparative analysis of SHAP-value and importance-based methods. J 
Big Data. 2024;11(1). https:/​/doi.or​g/10.11​86/s​40537-024-00905-w

38.	 Wu CD, Zhu JJ, Hsu CY, Shie RH. Quantifying source contributions to ambient 
NH3 using Geo-AI with time lag and parcel tracking functions. Environment 
International. 2024; 185. httpshttps://doi.org/10.1016/j.envint.2024.108520

39.	 Chung YM, Heshmati A. Measurement of environmentally sensitive produc-
tivity growth in Korean industries. J Clean Prod. 2015;104:380–91. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​
o​r​g​/​1​0​.​1​0​1​6​/​j​.​j​c​l​e​p​r​o​.​2​0​1​4​.​0​6​.​0​3​0​​​​​​​

https://doi.org/10.1016/j.jclepro.2020.122771
https://doi.org/10.1016/j.jclepro.2020.122771
https://doi.org/10.1016/j.jece.2018.04.026
https://doi.org/10.1007/s11356-022-24414-6
https://doi.org/10.1007/s11356-022-24414-6
https://doi.org/10.4103/ijoem.IJOEM_193_20
https://doi.org/10.1289/ehp2590
https://doi.org/10.3390/ijerph19010024
https://doi.org/10.3390/ijerph19010024
https://doi.org/10.1002/ajim.23034
https://doi.org/10.1002/ajim.23034
https://doi.org/10.1007/s00484-020-01874-4
https://doi.org/10.1007/s00484-020-01874-4
https://doi.org/10.1016/j.envres.2023.116852
https://doi.org/10.1016/j.envres.2023.116852
https://doi.org/10.1016/j.envres.2021.110781
https://doi.org/10.1016/j.envres.2021.110781
https://doi.org/10.1016/j.ecoenv.2018.09.080
https://doi.org/10.1016/j.ecoenv.2018.09.080
https://doi.org/10.1016/j.renene.2018.08.092
https://doi.org/10.1016/j.renene.2018.08.092
https://doi.org/10.1016/j.jclepro.2020.123955
https://doi.org/10.1016/j.jclepro.2020.123955
https://doi.org/10.1126/sciadv.abl3564
https://doi.org/10.1186/s13195-023-01289-4
https://doi.org/10.1186/s13195-023-01289-4
https://doi.org/10.1016/j.scitotenv.2023.164660
https://doi.org/10.1016/j.scitotenv.2023.164660
https://doi.org/10.1016/j.chemosphere.2022.137039
https://doi.org/10.1038/s41467-021-24823-0
https://doi.org/10.1038/s41467-021-24823-0
https://doi.org/10.1016/j.gr.2022.07.013
https://doi.org/10.1016/j.gr.2022.07.013
https://doi.org/10.1093/bib/bbad002
https://doi.org/10.1007/s00259-023-06513-9
https://doi.org/10.1177/20552076231184054
https://doi.org/10.1177/20552076231184054
https://doi.org/10.1186/s40249-022-00946-4
http://www.enquanzhou.com/2019-11/19/c_425637.htm#:~:text=Quangang%20
http://www.enquanzhou.com/2019-11/19/c_425637.htm#:~:text=Quangang%20
https://doi.org/10.1539/joh.2017-0275-RA
https://doi.org/10.1539/joh.2017-0275-RA
https://doi.org/10.1016/j.jclinepi.2017.01.013
https://doi.org/10.1016/j.jclinepi.2017.01.013
https://doi.org/10.1186/s12889-024-18692-7
https://doi.org/10.1186/s12889-024-18692-7
https://doi.org/10.1186/s12889-023-17556-w
https://doi.org/10.1186/s12889-023-17556-w
https://doi.org/10.1186/s12889-016-3239-y
https://doi.org/10.3389/fonc.2021.633556
https://doi.org/10.3389/fonc.2021.633556
https://doi.org/10.18637/jss.v106.i01
https://doi.org/10.18637/jss.v106.i01
https://doi.org/10.1038/s41598-023-29647-0
https://doi.org/10.1038/s41598-023-29647-0
https://doi.org/10.3389/fcell.2022.888859
https://doi.org/10.3390/biom11121786
https://doi.org/10.1186/s40537-024-00905-w
https://doi.org/10.1016/j.envint.2024.108520
https://doi.org/10.1016/j.jclepro.2014.06.030
https://doi.org/10.1016/j.jclepro.2014.06.030


Page 16 of 17Zhang et al. BMC Public Health         (2024) 24:3269 

40.	 Taghizadeh E, Heydarheydari S, Saberi A, JafarpoorNesheli S, Rezaeijo SM. 
Breast cancer prediction with transcriptome profiling using feature selection 
and machine learning methods. BMC Bioinformatics. 2022;23(1):410. ​h​t​t​​p​s​:​/​​/​d​
o​​i​.​​o​r​g​/​1​0​.​1​1​8​6​/​s​1​2​8​5​9​-​0​2​2​-​0​4​9​6​5​-​8​​​​​​​

41.	 Lip GYH, Genaidy A, Tran G, Marroquin P, Estes C, Sloop S. Effects of multimor-
bidity on incident COVID-19 events and its interplay with COVID-19 event 
status on subsequent incident myocardial infarction (MI). Eur J Clin Invest. 
2022;52(5):e13760. https:/​/doi.or​g/10.11​11/e​ci.13760

42.	 Marien L, Valizadeh M, Castell Wz, Nam C, Rechid D, Schneider A, Meisinger C, 
Linseisen J, Wolf K, Bouwer LM. Machine learning models to predict myocar-
dial infarctions from past climatic and environmental conditions. Nat Hazards 
Earth Syst Sci. 2022;22(1561–8633):3015–39. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​5​1​9​4​/​n​h​e​s​s​-​2​
2​-​3​0​1​5​-​2​0​2​2​​​​​​​

43.	 Stretch R, Ryden A, Fung CH, Martires J, Liu S, Balasubramanian V, Saedi 
B, Hwang D, Martin JL, Della Penna N, et al. Predicting Nondiagnostic 
Home Sleep Apnea tests using machine learning. J Clin Sleep Med. 
2019;15(11):1599–608. https:/​/doi.or​g/10.56​64/j​csm.8020

44.	 Nunfam VF, Adusei-Asante K, Frimpong K, Van Etten EJ, Oosthuizen J. Barriers 
to occupational heat stress risk adaptation of mining workers in Ghana. Int J 
Biometeorol. 2020;64(7):1085–101. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​0​7​/​s​0​0​4​8​4​-​0​2​0​-​0​1​8​8​
2​-​4​​​​​​​

45.	 Weinberger KR, Tamburic L, Peters CE, McLeod CB. Heat-related illness 
among workers in British Columbia, 2001–2020. J Occup Environ Med. 
2023;65(2):E88–92. https:/​/doi.or​g/10.10​97/j​om.0000000000002761

46.	 Buller M, Fellin R, Bursey M, Galer M, Atkinson E, Beidleman BA, Marcello MJ, 
Driver K, Mesite T, Seay J, et al. Gait instability and estimated core tempera-
ture predict exertional heat stroke. Br J Sports Med. 2022;56(8):446–. ​h​t​t​​p​s​:​/​​/​d​
o​​i​.​​o​r​g​/​1​0​.​1​1​3​6​/​b​j​s​p​o​r​t​s​-​2​0​2​1​-​1​0​4​0​8​1​​​​​​​

47.	 Lu IC, Yang CC, Huang CH, Chen SY, Lin CW, Lin CH, Chuang HY. The risk 
factors for Radiolucent Nephrolithiasis among workers in High-Temperature 
workplaces in the Steel Industry. Int J Environ Res Public Health. 2022;19(23). 
https:/​/doi.or​g/10.33​90/i​jerph192315720

48.	 Harsini AZ, Ghofranipour F, Sanaeinasab H, Shokravi FA. A randomised 
controlled trial of an educational intervention to promote safe behaviours in 
petrochemical workers: a study protocol. BMC Public Health. 2019;19. ​h​t​t​​p​s​:​/​​/​
d​o​​i​.​​o​r​g​/​1​0​.​1​1​8​6​/​s​1​2​8​8​9​-​0​1​9​-​7​1​2​6​-​1​​​​​​​

49.	 Marinaccio A, Scortichini M, Gariazzo C, Leva A, Bonafede M, Donato FKD, 
Stafoggia M, Viegi G, Michelozzi P, Carla A et al. Nationwide epidemiological 
study for estimating the effect of extreme outdoor temperature on occupa-
tional injuries in Italy. Environment International. 2019; 133. httpshttps://doi.
org/10.1016/j.envint.2019.105176

50.	 Li XD, Chow KH, Zhu YM, Lin Y. Evaluating the impacts of high-temperature 
outdoor working environments on construction labor productivity in China: 
a case study of rebar workers. Build Environ. 2016;95:42–52. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​
0​.​1​0​1​6​/​j​.​b​u​i​l​d​e​n​v​.​2​0​1​5​.​0​9​.​0​0​5​​​​​​​

51.	 Liu J, Varghese BM, Hansen A, Xiang J, Zhang Y, Dear K, Gourley M, Driscoll 
T, Morgan G, Capon A, et al. Is there an association between hot weather 
and poor mental health outcomes? A systematic review and meta-analysis. 
Environ Int. 2021;153:106533. https:/​/doi.or​g/10.10​16/j​.envint.2021.106533

52.	 Jingesi M, Lan S, Hu J, Dai M, Huang S, Chen S, Liu N, Lv Z, Ji J, Li X, et al. 
Association between thermal stress and cardiovascular mortality in the 
subtropics. Int J Biometeorol. 2023;67(12):2093–106. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​0​7​/​s​
0​0​4​8​4​-​0​2​3​-​0​2​5​6​5​-​6​​​​​​​

53.	 Shin S, Choi JH, Lee KE, Yoon JH, Lee W. Risk and status of Gastrointestinal 
Cancer according to the International Standard Industrial classification in 
Korean workers. Cancers (Basel). 2022;14(20). ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​3​3​9​0​/​c​a​n​c​e​r​s​
1​4​2​0​5​1​6​4​​​​​​​

54.	 Si S, Lewkowski K, Fritschi L, Heyworth J, Liew D, Li IA. Productivity Burden of 
Occupational noise-Induced hearing loss in Australia: a life table modelling 
study. Int J Environ Res Public Health. 2020;17(13). ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​3​3​9​0​/​i​j​e​r​
p​h​1​7​1​3​4​6​6​7​​​​​​​

55.	 Neri F, Laschi A, Foderi C, Fabiano F, Bertuzzi L, Marchi E. Determining noise 
and vibration exposure in Conifer Cross-cutting Operations by using Li-Ion 
batteries and Electric Chainsaws. Forests. 2018;9(8). ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​3​3​9​0​/​f​9​
0​8​0​5​0​1​​​​​​​

56.	 Mette J, Velasco Garrido M, Harth V, Preisser AM, Mache S. Healthy offshore 
workforce? A qualitative study on offshore wind employees’ occupational 
strain, health, and coping. BMC Public Health. 2018;18(1):172. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​
1​0​.​1​1​8​6​/​s​1​2​8​8​9​-​0​1​8​-​5​0​7​9​-​4​​​​​​​

57.	 Ebi KL, Capon A, Berry P, Broderick C, de Dear R, Havenith G, Honda Y, Kovats 
RS, Ma W, Malik A, et al. Hot weather and heat extremes: health risks. Lancet. 
2021;398(10301):698–708.

58.	 Nguyen THY, Bertin M, Bodin J, Fouquet N, Bonvallot N, Roquelaure Y. Multiple 
exposures and coexposures to Occupational Hazards among Agricultural 
Workers: a systematic review of Observational studies. Saf Health Work. 
2018;9(3):239–48. https:/​/doi.or​g/10.10​16/j​.shaw.2018.04.002

59.	 Cattaneo I, Kalian AD, Di Nicola MR, Dujardin B, Levorato S, Mohimont L, 
Nathanail AV, Carnessechi E, Astuto MC, Tarazona JV, et al. Risk Assessment 
of Combined exposure to multiple chemicals at the European Food Safety 
Authority: principles, Guidance documents, applications and Future chal-
lenges. Toxins. 2023;15(1). https:/​/doi.or​g/10.33​90/t​oxins15010040

60.	 McInnes JA, Akram M, MacFarlane EM, Keegel T, Sim MR, Smith P. Association 
between high ambient temperature and acute work-related injury: a case-
crossover analysis using workers’ compensation claims data. Scandinavian J 
Work Environ Health. 2017;43(1):86–94. https:/​/doi.or​g/10.52​71/s​jweh.3602

61.	 Braun J, Baraliakos X, Bülow R, Schmidt CO, Richter A. Striking sex differences 
in magnetic resonance imaging findings in the sacroiliac joints in the popula-
tion. Arthritis Res Ther. 2022;24(1):29. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​1​8​6​/​s​1​3​0​7​5​-​0​2​1​-​0​2​7​
1​2​-​7​​​​​​​

62.	 He BJ, Zhao DX, Dong X, Xiong K, Feng C, Qi QL, Darko A, Sharifi A, Pathak M. 
Perception, physiological and psychological impacts, adaptive awareness 
and knowledge, and climate justice under urban heat: A study in extremely 
hot-humid Chongqing, China. Sustainable Cities and Society. 2022; 79. http-
shttps://doi.org/10.1016/j.scs.2022.103685

63.	 Mathee A, Oba J, Rose A. Climate change impacts on working people (the 
HOTHAPS initiative): findings of the South African pilot study. Glob Health 
Action. 2010;3. https:/​/doi.or​g/10.34​02/g​ha.v3i0.5612

64.	 Chen Y, Zhang CK, Lu L, Zheng XH, Chang SQ. Dynamic of upper body sweat 
distribution in young males wearing fully encapsulated chemical protective 
ensembles. Sci Rep. 2022;12(1). https:/​/doi.or​g/10.10​38/s​41598-022-04974-w

65.	 Smyth B, Maunder E, Meyler S, Hunter B, Muniz-Pumares D. Decoupling of 
Internal and External Workload during a Marathon: an analysis of durability in 
82,303 recreational runners. Sports Med. 2022;52(9):2283–95. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​
1​0​.​1​0​0​7​/​s​4​0​2​7​9​-​0​2​2​-​0​1​6​8​0​-​5​​​​​​​

66.	 Giersch GEW, Taylor KM, Caldwell AR, Charkoudian N. Body mass index, but 
not sex, influences exertional heat stroke risk in young healthy men and 
women. Am J Physiology-Regulatory Integr Comp Physiol. 2023;324(1):R15–9. 
https:/​/doi.or​g/10.11​52/a​jpregu.00168.2022

67.	 Kim D, Kim HJ, Song TJ. Association of body composition indices with 
cardiovascular outcomes: a nationwide cohort study. Am J Clin Nutr. 
2024;119(4):876–84. https:/​/doi.or​g/10.10​16/j​.ajcnut.2024.02.015

68.	 Park SE, So WY, Kang YS, Yang JH. Relationship between perceived stress, 
obesity, and hypertension in Korean adults and older adults. Healthcare. 
2023;11(16). https:/​/doi.or​g/10.33​90/h​ealthcare11162271

69.	 Gervasoni E, Bertoni R, Anastasi D, Solaro C, Di Giovanni R, Grange E, Gunga 
HC, Rovaris M, Cattaneo D, Maggioni MA et al. Acute Thermoregulatory and 
Cardiovascular Response to Submaximal Exercise in People With Multiple 
Sclerosis. Frontiers in Immunology. 2022; 13. httpshttps://doi.org/10.3389/
fimmu.2022.842269

70.	 Spech C, Paponetti M, Mansfield C, Schmitt L, Briggs M. Biomechanical 
variations in children who are overweight and obese during high-impact 
activities: a systematic review and meta-analysis. Obes Rev. 2022;23(6). ​h​t​t​​p​s​:​/​​
/​d​o​​i​.​​o​r​g​/​1​0​.​1​1​1​1​/​o​b​r​.​1​3​4​3​1​​​​​​​

71.	 Stephens D, Brearley M, Vermeulen L. Heat Health Management in a Quaran-
tine and isolation facility in the tropics. Prehosp Disaster Med. 2022;37(2):259–
64. https:/​/doi.or​g/10.10​17/s​1049023x22000255

72.	 Tawatsupa B, Yiengprugsawan V, Kjellstrom T, Berecki-Gisolf J, Seubsman SA, 
Sleigh A. Association between Heat Stress and Occupational Injury among 
Thai workers: findings of the Thai Cohort Study. Ind Health. 2013;51(1):34–46. 
https:/​/doi.or​g/10.24​86/i​ndhealth.2012-0138

73.	 Sui X, Wang Y, Jin M, Li K, Jiang G, Song A, He Z, Yin C, Zhao J, Wang L, et al. 
The effects of dexmedetomidine for patient-controlled analgesia on post-
operative sleep quality and gastrointestinal motility function after surgery: a 
prospective, randomized, double-blind, and controlled trial. Front Pharmacol. 
2022;13:990358. https:/​/doi.or​g/10.33​89/f​phar.2022.990358

74.	 Elhadi M, Alsoufi A, Msherghi A, Alshareea E, Ashini A, Nagib T, Abuzid N, 
Abodabos S, Alrifai H, Gresea E, et al. Psychological Health, Sleep Quality, 
Behavior, and Internet Use among people during the COVID-19 pandemic: a 
cross-sectional study. Front Psychiatry. 2021;12:632496. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​3​3​8​
9​/​f​p​s​y​t​.​2​0​2​1​.​6​3​2​4​9​6​​​​​​​

https://doi.org/10.1186/s12859-022-04965-8
https://doi.org/10.1186/s12859-022-04965-8
https://doi.org/10.1111/eci.13760
https://doi.org/10.5194/nhess-22-3015-2022
https://doi.org/10.5194/nhess-22-3015-2022
https://doi.org/10.5664/jcsm.8020
https://doi.org/10.1007/s00484-020-01882-4
https://doi.org/10.1007/s00484-020-01882-4
https://doi.org/10.1097/jom.0000000000002761
https://doi.org/10.1136/bjsports-2021-104081
https://doi.org/10.1136/bjsports-2021-104081
https://doi.org/10.3390/ijerph192315720
https://doi.org/10.1186/s12889-019-7126-1
https://doi.org/10.1186/s12889-019-7126-1
https://doi.org/10.1016/j.envint.2019.105176
https://doi.org/10.1016/j.envint.2019.105176
https://doi.org/10.1016/j.buildenv.2015.09.005
https://doi.org/10.1016/j.buildenv.2015.09.005
https://doi.org/10.1016/j.envint.2021.106533
https://doi.org/10.1007/s00484-023-02565-6
https://doi.org/10.1007/s00484-023-02565-6
https://doi.org/10.3390/cancers14205164
https://doi.org/10.3390/cancers14205164
https://doi.org/10.3390/ijerph17134667
https://doi.org/10.3390/ijerph17134667
https://doi.org/10.3390/f9080501
https://doi.org/10.3390/f9080501
https://doi.org/10.1186/s12889-018-5079-4
https://doi.org/10.1186/s12889-018-5079-4
https://doi.org/10.1016/j.shaw.2018.04.002
https://doi.org/10.3390/toxins15010040
https://doi.org/10.5271/sjweh.3602
https://doi.org/10.1186/s13075-021-02712-7
https://doi.org/10.1186/s13075-021-02712-7
https://doi.org/10.1016/j.scs.2022.103685
https://doi.org/10.3402/gha.v3i0.5612
https://doi.org/10.1038/s41598-022-04974-w
https://doi.org/10.1007/s40279-022-01680-5
https://doi.org/10.1007/s40279-022-01680-5
https://doi.org/10.1152/ajpregu.00168.2022
https://doi.org/10.1016/j.ajcnut.2024.02.015
https://doi.org/10.3390/healthcare11162271
https://doi.org/10.3389/fimmu.2022.842269
https://doi.org/10.3389/fimmu.2022.842269
https://doi.org/10.1111/obr.13431
https://doi.org/10.1111/obr.13431
https://doi.org/10.1017/s1049023x22000255
https://doi.org/10.2486/indhealth.2012-0138
https://doi.org/10.3389/fphar.2022.990358
https://doi.org/10.3389/fpsyt.2021.632496
https://doi.org/10.3389/fpsyt.2021.632496


Page 17 of 17Zhang et al. BMC Public Health         (2024) 24:3269 

75.	 Wee J, Tan XR, Gunther SH, Ihsan M, Leow MKS, Tan DSY, Eriksson JG, Lee JKW. 
Effects of medications on Heat loss capacity in Chronic Disease patients: 
Health implications amidst global warming. Pharmacol Rev. 2023;75(6):1140–
66. https:/​/doi.or​g/10.11​24/p​harmrev.122.000782

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1124/pharmrev.122.000782

	﻿The use of machine and deep learning to model the relationship between discomfort temperature and labor productivity loss among petrochemical workers
	﻿Abstract
	﻿Background
	﻿Methods
	﻿Study design and participant recruitment
	﻿Questionnaire design
	﻿Statistical analysis
	﻿Extraction of key features
	﻿Construction of machine and deep learning models
	﻿Assessment of variable significance


	﻿Results
	﻿Comparison of demographic characteristics between affected and unaffected workers
	﻿Selection of critical variables
	﻿Comparison of ML and DL models
	﻿Visualization of feature importance

	﻿Discussion
	﻿Model construction and evaluation
	﻿Analysis of influencing factors
	﻿Heat-related training
	﻿Duration of weekly working hours
	﻿Co-exposure to other occupational hazards
	﻿Personal characteristics


	﻿Limitations
	﻿Conclusion
	﻿References


