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Is home where the heat is? comparing residence-based with
mobility-based measures of heat exposure in San Diego,
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BACKGROUND: Heat can vary spatially within an urban area. Individual-level heat exposure may thus depend on an individual’s
day-to-day travel patterns (also called mobility patterns or activity space), yet heat exposure is commonly measured based on place
of residence.
OBJECTIVE: In this study, we compared measures assessing exposure to two heat indicators using place of residence with those
defined considering participants’ day-to-day mobility patterns.
METHODS: Participants (n= 599; aged 35-80 years old [mean =59 years]) from San Diego County, California wore a GPS device to
measure their day-to-day travel over 14-day intervals between 2014-10-17 and 2017-10-06. We measured exposure to two heat
indicators (land-surface temperature [LST] and air temperature) using an approach considering their mobility patterns and an
approach considering only their place of residence. We compared participant mean and maximum exposure values from each
method for each indicator.
RESULTS: The overall mobility-based mean LST exposure (34.7 °C) was almost equivalent to the corresponding residence-based
mean (34.8 °C; mean difference in means=−0.09 °C). Similarly, the mean difference between the overall mobility-based mean air
temperature exposure (19.2 °C) and the corresponding residence-based mean (19.2 °C) was negligible (−0.02 °C). Meaningful
differences emerged, however, when comparing maximums, particularly for LST. The mean mobility-based maximum LST was 40.3 °C
compared with a mean residence-based maximum of 35.8 °C, a difference of 4.51 °C. The difference in maximums was considerably
smaller for air temperature (mean= 0.40 °C; SD= 1.41 °C) but nevertheless greater than the corresponding difference in means.
IMPACT: As the climate warms, assessment of heat exposure both at and away from home is important for understanding its health
impacts. We compared two approaches to estimate exposure to two heat measures (land surface temperature and air temperature).
The first approach only considered exposure at home, and the second considered day-to-day travel. Considering the average
exposure estimated by each approach, the results were almost identical. Considering the maximum exposure experienced (specific
definition in text), the differences between the two approaches were more considerable, especially for land surface temperature.
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INTRODUCTION
As the climate warms globally, it is increasingly important to
address exposure to extreme urban heat and its health-related
risks [1], given that most of the population lives in urban areas
[2]. This need was underscored by the extreme heat of the
summer of 2023, which was the hottest on record [3]. Globally,
about 500,000 deaths annually have been estimated to be
attributable to excess heat [4]. Features of the built and natural
urban environment contribute to the variation of heat between

urban areas and their surrounding rural areas (often called the
urban heat island effect) and within urban areas (intra-urban
heat) [5]. Impervious surfaces (e.g., asphalt, concrete) and
buildings absorb heat [6], while trees, vegetation, and exposed
soil which can have cooling effects [2]. In U.S. settings, intra-
urban variation in heat commonly results in inequitably high
heat exposure in socially vulnerable areas of the city, such as
those with high poverty or a high proportion of non-white
residents [7, 8].
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Environmental conditions affecting human thermal comfort
include air temperature, wind speed, mean radiant temperature,
and humidity, but measurement of these conditions at a high
spatial resolution throughout the full extent of an urban area is
rarely feasible. As a result, research on intraurban heat commonly
uses remote-sensing-derived land-use indicators with high spatial
resolution and global coverage such as land-surface temperature
to serve as a proxy for personal heat exposure [5, 9, 10]. Gridded
data on air temperature are also available for the U.S. [11], but at a
coarser spatial resolution.
In epidemiologic studies, heat indicators obtained from gridded

data are commonly linked to individuals based on residential
location [12]. However, given the noted intraurban variation in
heat [7], heat exposure may depend not only on residential
location but also on the locations a person visits throughout their
routine day-to-day travel (also called “activity space”) [13, 14]. An
activity-space-based, dynamic, or otherwise non-residential
approach to measure exposure is now widely used across several
health-relevant exposures [13, 15]. For example, the paradigm has
been used to measure exposure to alcohol and tobacco retail
outlets [16, 17], food-outlet accessibility [18], physical activity and
active travel [19], and air pollution [20, 21].
An activity-space-based approach may also be well-suited for

assessment of heat exposure in epidemiologic studies, depending
on the research question. For example, acute exposure to extreme
heat can affect the transient risk of acute myocardial infarction or
heat stroke [22–24]. If such extreme heat existed within an
individual’s activity space but not near their home, exposure
assessment considering their place of residence alone would lead
to exposure misclassification. On the other hand, cumulative heat
exposure is also relevant for health. For example, chronic heat
exposure can lead to dehydration, consequently causing strain on
the cardiovascular and renal systems [1]. Notably, residential
nighttime heat exposure is a particularly important time window,
as the urban heat island effect is most pronounced at night when
individuals are usually home [25, 26].
Given that heat exposure both at and away from home is

important for health, it is important to understand the extent to
which results from heat-exposure assessment methods that
consider residence alone differ from those that also consider
day-to-day travel patterns. One study in Bangladesh compared
residence-based with mobility-based assessment of land-surface
temperature exposure and found that a residence-based approach
alone underestimated heat exposure in some groups [27]. There is
a need for additional research comparing the two approaches in
U.S. settings. Therefore, our objective is to compare mobility-
based and residence-based measures of exposure to two
indicators of the outdoor heat environment (land surface
temperature and air temperature) in a study population of
Southern California residents. We stratify the comparison of
measurement methods by daily distance travelled and socio-
demographic characteristics to inform future research on heat
exposure in socially vulnerable groups who may be at higher risk
of heat exposure and its health consequences.

METHODS
Study population and setting
We assessed heat exposure in the Community of Mines Study, an
observational study with enrollment between 2014 and 2017 in San Diego
County, California. San Diego County has a population of about 3.3 million
per the 2020 census [28]. The urban area of San Diego County has an arid
Mediterranean climate with average daytime high temperatures in the mid
70 degrees Fahrenheit in the summer and in the mid 60 degrees
Fahrenheit in the winter [29]. Annual precipitation totals less than 12
inches, with most rainfall occurring during the cooler months. The county
includes mountains and sparsely populated areas in its eastern region,
which receives snowfall [28].

The Community of Mines protocol is available elsewhere [30], and
aspects of the study have been described in other research [20, 31]. Briefly,
602 adults aged 35-80 years old (mean age=59 years) who had lived for at
least 6 months in a selected census block group completed the study. The
study population is comprised of 56% women and is ethnically (42%
Hispanic/Latino) and socioeconomically diverse (21% income $30,000 or
less; 60% $55,000 or more) [20, 31]. Study ethics approval was obtained
from UCSD IRB protocol #140510. Signed informed consent was obtained
from all participants who enrolled in the study.

Participant GPS measures
Participants were instructed to wear Qstarz GPS devices (Qstarz Interna-
tional Co. Ltd, Taipei, Taiwan) during waking hours to measure their
movement [30, 31]. The GPS observations, which we also call pings, each
had a latitude value, a longitude value, and a time stamp. GPS data were
processed, cleaned, and aggregated to the minute level, as detailed in the
appendix of Jankowska et al. [31].
Of the 602 participants, 599 participants wore devices for at least one

valid day, where a valid day is defined as having at least 10 h of wear time
[31]. We assume pings that occurred one minute apart occurred while the
GPS was being worn. Participants wore GPS devices on average for
13.8 days and for 13.3 h per day (median=13.8 h per day) at various two-
week intervals between 2014-10-17 and 2017-10-06. The average GPS
follow-up of about 14 days corresponds to the minimum number of days
recommended to measure activity spaces [14]. Among those pings that did
not occur one minute apart, the per-person mean duration between pings
was 10.7 h (median=10.2 h), and there were on average 14.1 such pings
per participant. We assume these pings with an interval longer than one
minute represent non-wear time between going to bed and waking the
next day.
We created activity paths [16] with each participant’s GPS data, ordering

each participant’s GPS pings in time. We excluded points with as-the-crow-
flies speeds exceeding 100 miles per hour (0.04% of person-time recorded)
from that point to the next point in time. Upon inspecting these segments
visually, they appeared to either represent flights, or implausible or
erroneous GPS bouncing. We also excluded points outside San Diego
County (1.1% of total person-time).
To descriptively characterize the activity space of participants, we

measured their average distance traveled per day, where distance traveled
is the cumulative distance between their GPS pings for that day. We also
calculated their average daily time spent at home (home defined below)
within a 200m buffer of their home, including non-wear time.

Heat indicators and data sources
We used two gridded measures of heat: land surface temperature (LST)
and air temperature (Table 1). LST is defined as “how hot the surface of the
Earth would feel to the touch in a particular location” [32]. We downloaded
LST data from Landsat 8-9 Collection 2 Level 2 Band 10 ST [33] from the
U.S. Geological Survey’s EarthExplorer data portal (https://
earthexplorer.usgs.gov; accessed April 29th, 2024). The data are available
every 15 days at a spatial resolution of 30meters. We examined 69 images
over San Diego County (Path 40, Row 37) between 2014-09-30 and 2017-
10-08. We removed images with more than 3% cloud cover, resulting in a
total of 35 images. Specific image identifiers and dates appear in eTable 1.
The important advantage of Landsat-measured LST for this research is its

high spatial resolution (30 m), which is fine enough to measure a wide
street [34]. LST has limitations, however, as a direct measure of human heat
exposure [10]. We thus also gathered gridded data on air temperature
from temperature from gridMET [11], which may more closely reflect
human thermal comfort than LST [5, 10]. The gridMET air-temperature data
are also available at a higher temporal resolution than LST (daily) and allow
consideration of intra-diurnal variation in heat, as the data include both
daily maximum and minimum air temperature. The gridMET air-
temperature has a coarser spatial resolution than the Landsat LST data,
however. Its spatial resolution of 4 km corresponds roughly to a
neighborhood-scale air-temperature measure [35]. We gathered 1054 days
of gridMET data for both maximum and minimum air temperature in San
Diego County.
The distributions of LST, maximum air temperature, and minimum air

temperature over time within a 200m buffer of the area traveled by all of
the study participants (regardless of time elapsed therein) appear in
Table 1 and Fig. 1. The average LST over this area during the study period
ranged from a low of 286 K to a high of 319 K, with an average within-day
spatial variation (standard deviation) of 8.36 K. Maximum daily air
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temperature ranged over time from an average (over pixels on that day) of
282 K to 314 K, and the corresponding average minimum daily air
temperature ranged from 273 K to 295 K. Within-day spatial variability
was lower for air temperature (average standard deviation of 3.75 K and
3.02 K, respectively for maximum and minimum) than for LST (8.36 K).

Assessment of heat exposure
Mobility-based. We calculated two mobility-based measures of heat
exposure for both LST and air temperature: a time-weighted mean
(denoted as meanmobility�based to facilitate notation below) and the highest
average value of 10min intervals of their activity paths (
maximummobility�based). We calculated the time-weighted mean as a
measure of cumulative exposure and the maximum over 10min intervals
as a measure of the highest acute exposure.

Mean: To calculate mean mobility-based exposure to LST, we began by
extracting LST values at the point location of each GPS ping for each
participant, using both the image that most closely preceded the date of the
GPS ping (the index date) and the image that most closely followed that day.
For example, if a participant recorded activity on March 15th, 2015, we
extracted the LST value from March 9th, 2015, and March 25th, 2015 for each
ping recorded on March 15th, 2015. Then, for each ping on each index date,
we calculated the weighted average of its two LST values, weighting the two
values by the inverse of the time between the index date and the image date
so that the LST of the image nearer in time would receive a stronger weight
in the average. Specifically, if LSTmean is the weighted average between
these two days, then LSTmean ¼ LSTearlier�wtearlierþLST later�wtlater

wtearlierþwtlater
, where wtearlier ¼

number of days between the two LST images
index date�date of earlier LST image and wtlater ¼ number of days between the two LST images

date of later LST image�index date .
For each participant, we then calculated their weighted average mobility-
based LST exposure, weighting the value of each point’s value by its elapsed
time until the next one, including overnight time.
To calculate mean mobility-based exposure to air temperature, we broadly

followed the same method with some differences because air-temperature is
available at a daily temporal resolution. To roughly estimate minute-level air-
temperature exposure within day, we averaged the maximum and minimum
air temperature values at the location of each GPS ping based on the ping’s
time of day, assuming the maximum air temperature occurred at 3 pm and
that the minimum air temperature occurred at that day’s sunrise. We
calculated sunrise time for all days during the study period for San Diego,
California using NOAA’s calculator [36]. Specifically, again taking an inverse-
distance-in-time-weighting approach, if ATmean denotes the weighted
average between the maximum and minimum air temperatures at a time
of day (the index time) on the index date, then ATmean ¼ ATmax�wtmaxþATmin�wtmin

wtmaxþwtmin
,

where wtmax ¼ Time until or after3pmþTime since or until sunrise
Time until or after3pm , and wtmin ¼

Time until or after3pmþTime since or until sunrise
Time since or until sunrise . Time until or after 3 pm is the elapsed

time until 3 pm if the index time is before 3 pm or the elapsed time after
3 pm if after. The time since or until sunrise is the elapsed since sunrise if the
index is before 3 pm or until sunrise if after 3 pm.
We then calculated each participant’s mobility-based mean air-

temperature exposure as the weighted average of these estimated air-
temperature values over their duration of GPS follow-up, weighting
each GPS ping’s air temperature by the elapsed time until the next GPS
ping, again allowing that the elapsed time until the next GPS ping may
include non-wear time between going to bed and waking the next day.
To assess the impact of our decision to include non-wear time in the

time-weighted exposure measures, we also calculated the weighted mean
LST and air temperature excluding non-wear time.

Maximum: To assess acute exposure to the heat indicators, we grouped
participant’s GPS points into ordered sequences of 10min intervals and
took the mean exposure value of each 10min interval over their
constituent point-level values. We grouped points into 10min intervals
because heat stroke can develop in 10min [24]. We then found the
maximum (denoted as maximummobility�based) of each participant’s 10min-
interval averages.

Residence-based
Mean: To assess residence-based exposure to these heat indicators
(meanresidence�based), we first defined participants’ home location. To define
their home location, we drew a grid of hexagons over San Diego County, each
with an area of 1000m2 (each side ~ 62m). We defined home as the centroid
of the hexagon where the participant spent the most elapsed time, whereTa
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elapsed time is defined by the difference between sequential GPS pings,
including the difference between the last ping of one day and the first of the
next. We inferred home location as the location where the participant spent
the most time because we observed that many study participants were rarely
at the home address that they provided in the survey. Inferring home location
based on elapsed time is consistent with research using mobile-phone-based
location data that has inferred home location as the location where their
device spent the most time overnight [37–39]. For 587 (98%) of the 599
participants, the hexagon where the participant spent the most elapsed time
overnight (8 p.m.—6 a.m.) was either the same as (n= 578) or shared an
adjacent edge with (n= 9) the hexagon where they spent the most total
elapsed time. We chose to use the hexagon where the most total elapsed
time was spent rather than that where the most time was spent at night
because for some of the 2% (n= 12) of participants for which the two
locations differed, the hexagon where the most time was spent at night was
either a place of employment (suggesting night-shift work) or a campground
(suggesting the study period may have coincided with a vacation).
To calculate the mean residence-based exposure to each indicator for

each participant, we followed the same approach as for mobility-based
means, but instead of using the actual location of each GPS ping, we
extracted the heat-indicator value corresponding to the participant’s home
location at the time of each GPS ping. We then summarized the
information the same way as above.

Maximum: The approach for calculating maximum residence-based
exposure (maximumresidence�based) for LST differed from that of air
temperature because of the differences in the temporal resolution of
these indicators. Each participant’s maximum residence-based LST
exposure is the maximum of their day-level residence-based LST exposure
during their days of GPS follow-up. In contrast, the maximum residence-
based exposure to air temperature is the maximum value of each
participant’s set of 10min intervals, where the location used to calculate
the interval-specific means is always their home location.

Analysis
We compared mobility-based means with residence-based means and
mobility-based maximums with residence-based maximums using differences:
differencemeans ¼ meanmobility�based �meanresidence�based ; differencemaximums ¼
maximummobility�based �maximumresidence�based . We also compared means using
Pearson correlations.
To explore variation in the comparison measures by mobility patterns

and socio-demographic characteristics, we stratified results by tertiles of
average daily distance traveled (5.63–41.5 km; 41.5–65 km; 65–368 km),
age (35–50 years old; 51–65 years old; 66–80 years old), sex (female; male),
income (<$30 k; $30 k–$55 k; $55k+ ), and race and ethnicity (white;
Latino; Asian; Black; Native American or Pacific Islander).

Fig. 1 Distribution of the two heat indicators over the area traveled by all study participants over the study period. The points in panel
A depict the median land surface temperature over the area traveled by study participants on each day with imagery. Lines between points in
panel A are imputed values to facilitate visualization. The dark lines in Panel B depict the daily median maximum air temperature and daily
median minimum air temperature over the area traveled by study participants. The shaded regions range from the 5th through
95th percentiles of each measure over the area traveled by study participants on that day. Max maximum, min minimum.
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We plotted histograms to visually assess the distribution of the
difference measures.

RESULTS
Description of mobility patterns
Socio-demographic characteristics of the sample appear in Table 2
and have been reported previously [20]. Table 2 also presents the
average daily distance traveled and the percent of time spent
within 200 meters of inferred home. On average, study
participants traveled a mean of 59 km daily and spent 74% of
their GPS follow-up time at home, including non-wear time. There
was considerable variability in daily distance traveled between
(standard deviation (SD) between individuals=34 km) and within
(SD= 44 km) individuals. Older adults aged 66-80 years tended to
travel less daily distance (mean=50 km) and spend more time at
home (mean=79%) than their younger counterparts. Higher-
income individuals (above $55,000) traveled more daily distance
(mean=66 km) than those in the other income categories, and
Latino individuals traveled more daily distance (mean=64 km)
than individuals of other races and ethnicities.
eFigure 1 maps the home census tracts of the study

participants, and eFigure 2 maps where participants spent the
most time, classifying census tracts by the proportion of the total
person-time spent in them over all participants. Most participants
lived in and traveled through the urbanized west and southwest
regions of San Diego County. A small share of their time was spent
in the more rural central and eastern areas of the country.

Exposure measures
The overall mobility-based mean LST exposure (34.7 degrees Celsius
[°C]; Table 3) was almost equivalent to the corresponding residence-
based mean (34.8 °C; mean difference in means=−0.09 °C; Pearson

correlation of means=0.993; Table 4). There was some between-
individual variability in this difference measure (standard deviation
[SD] of difference=0.94 °C; Table 4), but the distribution was
concentrated around 0 (Fig. 2). The mean difference between the
overall mobility-based mean air temperature exposure (19.2 °C) and
the corresponding residence-based mean (19.2 °C) was even smaller
(−0.02 °C), as was its between-individual variability (SD of
difference=0.24 °C).
When non-wear time was excluded from the mobility-based

weighted mean, the difference between the two means remained
negligible though was slightly greater for LST (−0.17 °C) and
remained the same for air temperature (−0.02 °C).
Meaningful differences emerged, however, when comparing

maximums, particularly for LST. The mean mobility-based max-
imum was 40.3 °C (SD= 8.2 °C) compared with a mean residence-
based maximum of 35.8 °C (SD= 7.6 °C), a difference of 4.51 °C
(SD= 3.53 °C). The difference in maximums was considerably
smaller for air temperature (mean=0.40 °C; SD= 1.41 °C) but
nevertheless greater than the corresponding difference in means.
Although differences in means were uniformly small (all less

than 0.3 °C) when stratified by daily distance traveled and socio-
demographic characteristics, differences were slightly larger in
some groups (Table 4). For example, among those who traveled
65−368 km daily, the mean difference in means was −0.13 °C for
LST and −0.05 °C for air temperature compared with 0.01 °C and
−0.01 °C, respectively, among those who traveled 5.63−41.5 daily
km. Relative to other groups, differences in means were also
slightly larger among younger adults (e.g., −0.20 °C for LST) and
non-white individuals. For example, white individuals had a mean
difference in means of 0.03 °C for LST and 0.00 °C for air
temperature compared with −0.25 °C and −0.07 °C, respectively
for Black individuals. These relative patterns roughly held for the
differences in maximums.

Table 2. Daily distance traveled and percent of time spent near home among study population, stratified by socio-demographic characteristics.

Daily distance traveled (km) Percent of time spent within 200m of home

Characteristic n (%) Mean Between-
individual SD

Mean of within-
individual SDs

Mean Between-individual SD

Overall 599 59 34 44 74% 14%

Age (years), mean (SD) 59 (11)

35–50 years old 141 (24%) 68 46 51 71% 13%

51–65 years old 269 (45%) 61 30 45 73% 14%

66–80 years old 189 (32%) 50 27 39 79% 13%

Sex

Female 335 (56%) 57 33 42 74% 14%

Male 264 (44%) 61 35 47 74% 14%

Income

Income <$30k 162 (27%) 50 29 36 76% 14%

Income $30k-$55k 136 (23%) 57 31 44 73% 15%

Income $55k+ 278 (46%) 66 38 50 73% 13%

Missing 23 (4%) 51 24 39 77% 14%

Race/ethnicity

White 296 (49%) 55 34 41 76% 13%

Latino 250 (42%) 64 34 48 72% 14%

Asian 18 (3%) 58 24 35 68% 13%

Black 17 (3%) 59 30 67 79% 13%

Native American or
Pacific Islander

13 (2%) 58 52 39 74% 18%

Missing 5 (1%) 43 29 27 73% 21%

SD Standard deviation.
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Table 3. Summary measures (mean and maximum) of mobility-based (M) and residence-based (R) exposure to heat indicators overall, overall
excluding non-wear time, and by daily distance traveled and socio-demographic characteristics.

Within-
individual
mean (°C)

Within-
individual
maximum (°C)

Heat indicator Characteristica Method (M or R) Mean SD Mean SD

Land Surface Temperature All individuals M 34.7 7.5 40.3 8.2

R 34.8 7.7 35.8 7.6

All individuals; non-wear time excluded M 34.6 7.3 40.3 8.2

R 34.8 7.7 35.8 7.6

Air temperature All individuals M 19.2 3.5 28.6 4.4

R 19.2 3.5 28.2 4.3

All individuals; non-wear time excluded M 19.8 3.5 28.6 4.4

R 19.8 3.5 28.2 4.3

Daily distance traveled (km)

Land Surface Temperature [5.63, 41.5] M 34.8 6.9 39.3 7.3

R 34.8 7.0 35.7 7.0

(41.5, 65] M 34.8 7.6 40.6 8.4

R 34.9 7.8 35.9 7.8

(65, 368] M 34.6 7.8 40.9 8.7

R 34.7 8.2 35.7 8.1

Air temperature [5.63, 41.5] M 19.1 3.7 28.0 4.2

R 19.1 3.7 27.7 4.2

(41.5, 65] M 19.3 3.4 28.7 4.3

R 19.3 3.5 28.3 4.3

(65, 368] M 19.1 3.4 29.2 4.6

R 19.2 3.4 28.8 4.5

Age category

Land Surface Temperature (35,50] M 34.7 7.0 39.8 7.9

R 34.9 7.2 35.9 7.2

(50,65] M 35.4 7.9 40.8 8.5

R 35.5 8.1 36.5 8.0

(65,80] M 33.8 7.1 39.9 8.0

R 33.7 7.3 34.7 7.3

Air temperature (35,50] M 19.3 3.9 29.0 4.9

R 19.3 3.9 28.8 4.7

(50,65] M 19.2 3.4 28.8 4.2

R 19.2 3.5 28.4 4.2

(65,80] M 19.0 3.3 28.1 4.2

R 19.0 3.3 27.6 4.1

Sex

Land Surface Temperature Women M 35.2 7.2 40.6 7.8

R 35.2 7.3 36.2 7.3

Men M 34.1 7.7 39.9 8.6

R 34.3 8.1 35.2 8.0

Air temperature Women M 19.2 3.3 28.7 4.3

R 19.3 3.3 28.2 4.3

Men M 19.0 3.8 28.6 4.5

R 19.1 3.8 28.3 4.4

Income category

Land Surface Temperature < $30k M 36.8 6.8 42.0 7.6

R 36.9 6.9 37.9 6.8

$30k–$55k M 35.6 7.0 40.4 7.9

R 35.8 7.1 36.9 7.2
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DISCUSSION
This study compared a mobility-based approach for estimating
exposure to heat indicators—land surface temperature and air
temperature—with a residence-based approach in a San Diego study
population. Exposure measures were almost equivalent between the
two methods when comparing means, with some heterogeneity
when stratified by daily distance traveled and sociodemographic
characteristics. This is a somewhat unusual finding in the context of
much of the activity-space literature that, speaking generally,
typically observes that exposure measures considering activity space
differ from those that only consider place of residence.

Differences between the two approaches were more consider-
able when comparing the maximum exposure measured over the
course of each participant’s GPS follow-up, especially for LST, for
which the mean difference in maximums was 4.51 °C, as
compared with 0.4 °C for air temperature. This result can likely
be explained by the differences in spatial and temporal resolution
between the two measures. LST has high spatial resolution (30 m)
but poor temporal resolution (every 15 days at best), whereas air
temperature has poorer spatial resolution (4 km) and higher
temporal resolution (daily). The principal difference between the
mobility-based and residence-based methods is that the mobility-

Table 3. continued

Within-
individual
mean (°C)

Within-
individual
maximum (°C)

Heat indicator Characteristica Method (M or R) Mean SD Mean SD

$55k+ M 33.1 7.7 39.3 8.6

R 33.1 8.0 34.1 7.9

Missing M 34.2 6.8 39.1 8.1

R 34.2 7.1 35.2 7.5

Air temperature <$30k M 19.4 3.7 28.6 4.6

R 19.4 3.7 28.1 4.4

$30k–$55k M 19.2 3.6 28.7 4.4

R 19.2 3.7 28.4 4.5

$55k+ M 19.0 3.4 28.6 4.3

R 19.0 3.4 28.2 4.2

Missing M 18.7 3.0 28.4 4.4

R 18.7 3.1 28.3 4.4

Race or ethnicity

Land Surface Temperature White M 33.0 7.5 38.7 8.5

R 33.0 7.7 33.9 7.7

Hispanic or Latino M 36.8 7.0 42.2 7.7

R 37.1 7.2 38.1 7.0

Asian M 31.7 7.1 39.1 8.2

R 31.5 7.2 32.7 7.2

Black M 36.1 6.9 40.8 6.9

R 36.4 6.8 37.5 6.5

Native American or Pacific Islander M 36.3 6.2 41.3 6.1

R 36.8 6.3 38.0 5.9

Missing M 32.6 7.3 37.8 7.9

R 32.9 7.3 33.9 6.7

Air temperature White M 18.7 3.4 28.4 4.5

R 18.7 3.4 27.9 4.3

Hispanic or Latino M 19.5 3.4 28.8 4.1

R 19.6 3.4 28.4 4.1

Asian M 19.5 5.1 28.3 5.3

R 19.6 5.1 28.4 5.5

Black M 20.9 3.4 30.8 5.6

R 21.0 3.4 30.4 6.0

Native American or Pacific Islander M 19.3 4.1 30.2 4.1

R 19.3 4.2 29.4 4.7

Missing M 17.6 2.6 27.3 3.1

R 17.5 2.6 27.5 3.1
aUnless otherwise specified, applicable weighted means include non-wear time.
°C degrees Celsius, M Mobility-based method, R Residence-based method, SD standard deviation.
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Table 4. Measures comparing mobility-based with residence-based summary measures of exposure to heat indicators overall, overall excluding non-
wear time, and by daily distance traveled and socio-demographic characteristics.

Difference in
within-
individual
means (°C)

Difference in
within-
individual
maximums (°C)

Heat indicator Characteristica Mean SD Pearson correlation of means Mean SD

Land Surface Temperature All individuals −0.09 0.94 0.993 4.51 3.53

All individuals; non-wear time excluded −0.17 1.41 0.984 4.51 3.53

Air temperature All individuals −0.02 0.24 0.998 0.40 1.41

All individuals; non-wear time excluded −0.02 0.35 0.995 0.40 1.41

Daily distance traveled (km)

Land Surface Temperature [5.63,41.5] 0.01 0.75 0.994 3.62 2.73

(41.5,65] −0.14 0.90 0.994 4.70 3.40

(65,368] −0.13 1.14 0.991 5.20 4.15

Air temperature [5.63,41.5] −0.01 0.11 1.000 0.32 1.01

(41.5,65] −0.01 0.28 0.997 0.44 1.44

(65,368] −0.05 0.30 0.996 0.44 1.70

Age category

Land Surface Temperature (35,50] −0.20 0.97 0.991 3.91 3.29

(50,65] −0.17 0.97 0.993 4.32 3.16

(65,80] 0.11 0.86 0.993 5.22 4.07

Air temperature (35,50] −0.02 0.17 0.999 0.23 1.34

(50,65] −0.05 0.28 0.997 0.43 1.57

(65,80] 0.00 0.24 0.997 0.49 1.20

Sex

Land Surface Temperature Women −0.08 0.80 0.994 4.37 3.25

Men −0.10 1.10 0.991 4.68 3.86

Air temperature Women −0.02 0.25 0.997 0.50 1.42

Men −0.02 0.24 0.998 0.28 1.39

Income category

Land Surface Temperature < $30k −0.10 0.83 0.993 4.08 3.63

$30k–$55k −0.22 1.02 0.990 3.59 3.09

$55k+ −0.02 0.93 0.994 5.25 3.57

Missing −0.06 1.27 0.984 3.96 3.09

Air temperature <$30 k 0.01 0.28 0.997 0.54 1.40

$30k–$55k −0.04 0.20 0.998 0.28 1.42

$55k+ −0.03 0.24 0.997 0.41 1.46

Missing 0.00 0.15 0.999 0.05 0.50

Race or ethnicity

Land Surface Temperature White 0.03 0.89 0.994 4.82 3.69

Latino −0.21 0.93 0.992 4.16 3.41

Asian 0.14 1.55 0.977 6.34 3.83

Black −0.25 1.15 0.986 3.30 1.77

Native American or Pacific Islander −0.50 0.69 0.994 3.33 2.36

Unknown −0.29 0.86 0.993 3.94 2.43

Air temperature White 0.00 0.23 0.998 0.46 1.29

Latino −0.05 0.27 0.997 0.37 1.58

Asian −0.06 0.08 1.000 −0.19 0.84

Black −0.07 0.19 0.999 0.38 1.32

Native American or Pacific Islander −0.03 0.13 0.999 0.74 1.40

Unknown 0.13 0.21 0.997 −0.18 0.44
aUnless otherwise specified, applicable weighted means include non-wear time.
°C Degrees Celsius, SD Standard deviation.
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based method considers both the spatial and temporal variation
of the participant’s day-to-day travel patterns, whereas the
residence-based approach does not consider spatial variation in
the travel patterns but does consider the underlying temporal
variation of the measure at the home location. It follows, then, that
the residence-based approach would capture more total variation
for the measure with higher temporal resolution (air temperature),
given participants spent much of their time at home, whereas the
residence-based approach would capture less of the total variation
for the measure with worse temporal resolution but better spatial
resolution.
Although the activity-space literature has become vast, there

have not been many studies that have examined measures of
microclimate indicators, specifically, using an activity-space-based
approach. One study in China used mobile-phone-derived
location data to dynamically assess exposure to green space
[40]. That study did not compare mobility-based exposure
assessment with residence-based exposure assessment, however.
In the study comparing residence-based with mobility-based
measurement of land surface temperature in Dhaka, Bangladesh
[27], the authors found, in contrast with our results, that

particularly among people who commuted between the suburbs
and the city center, the residence-based measurement under-
estimated land surface temperature exposure compared with the
activity space-based measure by a difference of 2.4 °C. In
agreement with our results, other mobility groups in their study
had less of a difference, however. For example, the difference in
land surface temperature was −0.03 °C for the group who lived
within Dhaka Metropolitan Area and remained there all day and
was −0.08 °C for those who lived in the suburbs and remained
there all day. These values are about the same as our overall
difference in means of −0.09 °C. This result follows in that the
place of residence will more accurately reflect mobility-based
activity patterns if the person remains at or near the home for
most of the day. Our study is broadly in agreement with research
from western New York, US, which also found that residence-
based and mobility-based measures of exposure to green space
agreed with one another, with some differences by personal
characteristics [41].
One reason that residence-based and mobility-based means

generally agree in our study may be the fact that we weighted
mobility-based means proportionally to elapsed time, including

Fig. 2 Histograms of individual-level differences between means and maximums of each measurement method for each heat indicator.
These difference measures are defined in the analysis section of the methods text. LST land surface temperature, AT air temperature, °C
degrees Celsius.

M.D. Garber et al.

9

Journal of Exposure Science & Environmental Epidemiology



elapsed time overnight. In this way, our approach is similar to
methods described by Morrison et al. [16], Raskind et al. [18], and
Jankowska et al. [31]. Unlike some of these approaches [31],
however, our method here preserves the unit of the exposure
measure, which is important for making interpretable compar-
isons in this analysis and for comparing our results to other
studies.
Whether and by how much to weight the home location in

measuring mobility-based exposure is a common discussion topic
in the activity-space literature [15, 16, 31, 42], and the answer,
almost always, is that it depends on the research question under
study and specifically the hypothesized mechanism through
which the measured exposure affects health. In this study, we
included overnight time in our main analysis because extreme
heat exposure can be particularly harmful at night, especially for
older adults who comprised a large share of our study population
(32% 66 years and older) [26, 43–45]. Nighttime heat may
specifically have adverse consequences in San Diego, where air
conditioning is uncommon [46]. Nighttime heat events are
expected to become more frequent in California as the climate
warms [47]. When we excluded non-wear time from the mobility-
based measures, differences between means increased slightly
but remained small (Table 4).
Our results also highlight, however, that if transient exposure

to heat is of interest, then the residence-based maximum
exposure may differ from the maximum value experienced
during day-to-day travel. Whether transient or cumulative
exposure to heat is most relevant will depend on the health
outcome [1].
Our study has limitations that should be considered. Research

has shown that LST does not necessarily correspond with human
thermal comfort [10], and other measures such as mean radiant
temperature may better reflect human heat exposure. Mean
radiant temperature was unfortunately not available at the
needed spatial extent and resolution for this study. To address
the limitation of LST, we also included air temperature in our
analysis. While air temperature affects thermal comfort more
directly than LST [5], the air-temperature measure used in this
analysis does not consider radiation. It can thus be interpreted as
the neighborhood-scale air temperature as though people were in
the shade. The spatial resolution of air temperature was coarser
than that of LST but was fine enough to allow for spatial variation
within the course of most participants’ day-to-day travel patterns,
as participants traveled on average 59 km (SD= 34 km) per day.
On a 59 km trip, a participant could plausibly travel through 14 air-
temperature gridded pixels. It is also important to note that our
goal was to measure the heat-related conditions of the outdoor
environment, whether participants were outdoors or not. Partici-
pants may have been indoors or traveling in cars during much of
their travel patterns. If they had air conditioning available while
indoors, they would of course not be as affected by the outdoor
heat conditions. We nevertheless find the question of the
temperature of the outdoor environment to be relevant, as air
conditioning is uncommon in San Diego [46] and is not always
available in cars.
In summary, mobility-based measures of heat exposure were

not appreciably different from those considering place of
residence alone, although differences were slightly greater in
certain socio-demographic groups. When considering the max-
imum value experienced, values differed more strongly between
mobility-based and residence-based methods, especially for LST.
This result could be meaningful for health pathways between
transient heat exposure and acute health outcomes. Future
studies may wish to assess mobility-based and residence-based
measures using other measures that more directly align with
human thermal burden such as mean radiant temperature as data
availability permits.

DATA AVAILABILITY
The data on study participants are not available, as the data include identifiable
information such as day-to-day travel patterns. We have, however, posted code that
prepares the Landsat data on land-surface temperature and the GridMET data on air
temperature, as these data are publicly available. That code can be found here:
https://github.com/michaeldgarber/microclim-static-v-dynam/tree/main/scripts.
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