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Predicting maximum temperatures 
over India 10‑days ahead using 
machine learning models
J. V. Ratnam *, Swadhin K. Behera , Masami Nonaka , Patrick Martineau  & Kalpesh R. Patil 

In the months of March‑June, India experiences high daytime temperatures (Tmax), which sometimes 
lead to heatwave‑like conditions over India. In this study, 10 different machine learning models are 
evaluated for their ability to predict the daily Tmax anomalies 10 days ahead in the months of March‑
June. Several model experiments were carried out to identify an optimal model to predict daily Tmax 
anomalies over India. The results indicate that the AdaBoost regressor with Multi‑layer Perceptron 
as the base estimator is an optimal model to predict the Tmax anomalies over India in the months of 
March‑June. The optimal model predictions are benchmarked against 10‑day persistence predictions 
and the predictions from the Climate Forecast System (CFS) reforecast. The results indicate that the 
machine learning model skill is higher than persistence and comparable to CFS reforecast 10‑day 
predictions in April and May. In March and June, the machine learning models have low skill scores 
and perform no better than persistence. These results indicate that the machine learning models are 
promising tools to predict the surface air maximum temperature anomalies over India in April and May 
and can complement predictions from more sophisticated numerical models.

India experiences hot weather from March to June with temperatures reaching up to 45 °C on some days. These 
are also the months in which India experiences  heatwaves1,2. In recent times there has been an increase in the 
frequency and persistence of hot days over India and it is projected to increase further in the  future2–4. Heatwaves 
cause loss of lives and also affect the economy of the country. Predicting the maximum temperatures at least 
one week to 10 days ahead would help the planners to prepare well in advance for the eventualities. There have 
been some efforts to analyze and predict heat waves over India 5–15. The  studies5–7 indicate that the numerical 
models have reasonable skill in predicting heatwaves over India at least one week − 10 days ahead. The India 
Meteorological Department (IMD) issues heat wave guidance based on maximum temperature (Tmax) at vari-
ous time scales based on synoptic analysis of various meteorological parameters and with guidance from several 
numerical models (https:// inter nal. imd. gov. in/ secti on/ nhac/ dynam ic/ FAQ_ heat_ wave. pdf (page last accessed 
1st Aug 2023). In this study, we plan to complement the efforts of the forecasting centers by predicting Tmax 
using various machine-learning models with a lead time of 10 days. As a first step, we attempt to predict Tmax 
anomalies only over the regions of large standard deviation (Fig. 1a–d) in Tmax over India in the March-June 
months as these are regions that are highly prone to heatwaves. The Tmax anomalies over the regions of large 
standard deviation over India (Fig. 1) are highly correlated with the thermal comfort index, the universal thermal 
climate index (UTCI 16) anomalies with correlation coefficients of 0.74 (Mar). 0.68 (Apr), 0.62 (May Reg1), 0.77 
(May Reg2), and 0.91 (June). Also, the Granger causality 17–21 test shows the causality relation between Tmax and 
UTCI to be bi-directional justifying the use of Tmax to predict the heatwaves over the regions of large standard 
deviation over India (Fig. 1).

In recent times, machine learning and artificial intelligence techniques have been used to model climate and 
weather at various time  scales22. The machine learning models to predict extreme events such as heatwaves is 
still a developing field and only a few studies are available in the literature 23,24. However, there has been no sys-
tematic evaluation and development of machine learning models to forecast extreme temperatures over India. 
In this study, we attempt to fill that gap. Before attempting to evaluate machine learning models we carried out 
experiments with simple linear statistical models to predict the Tmax anomalies at 10-day lead over India but 
were not successful. So, we attempted to predict the Tmax anomalies using machine learning models, which 
are non-linear statistical models. We evaluated 10 different machine learning models for their ability to predict 
Tmax anomalies realistically, by conducting several model experiments by varying the preprocessing techniques, 
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feature reduction using principal component analysis, varying the activation function, and varying the number 
of neurons used in the models.

Results
Skill of the Tmax predictions
The model experiments were evaluated for their skill in predicting the Tmax anomalies over India based on the 
ACC skill score, RMSE, and their ability to predict extreme Tmax anomalies (exceeding 4 °C). As the skill of the 
ensemble mean of several models is often higher than that of a single model we generated ensembles of various 
combinations of model predictions and evaluated their skill in predicting the Tmax anomalies over India in the 
months March-June. Based on the analysis we identified the configuration of the models with higher ACC and 
lower RMSE. The model configurations for each month are given in Table 1.

It is interesting to note that of all the models evaluated in the study the AdaBoost with MLP as the base 
estimator (hereafter AdaBoost(MLP)) performs better than other ML models (Table 2) in all the months in 
predicting Tmax anomalies over India (Table 1). Also, as expected we found the ensemble mean of the predic-
tions to be skillful in all the months (Table 1). In March the average of AdaBoost(MLP) predictions with the 
number of neurons varying from 2 to 20 was found to give optimal results. In April the ensemble average of the 
predictions from AdaBoost(MLP) input processed using Min–Max normalization and PCA, and configured with 
RELU activation function and ADAM solver and with the number of neurons varying from 15 to 16 is found to 
give optimal skill in predicting the Tmax anomalies over India (Table 1). The configurations of the model in the 
months May and June are given in Table 1.

In the months of March and June, the persistence predictions have an ACC skill score of about 0.38 (Table 1). 
In both these months, the CFS reforecast predicted Tmax anomalies have a high ACC skill score of 0.72 and 0.62 
whereas the machine learning model does worse than persistence with ACC skill score of 0.27 in the month of 
March and performs slightly better than persistence in the month of June (Table 1). These findings indicate that 
the machine learning models used in the study are not much useful in predicting Tmax anomalies over India in 
the months of March and June.

Figure 1.  Standard deviation of Tmax over India in (a) March, (b) April (c) May (d) June. The regions of large 
standard deviation (> 2.5 in March–May and > 3.5 in June) are marked with a rectangular box.
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The ACC skill score of persistent predictions is low in both April and May (Table 1). The machine learning 
model AdaBoost(MLP) does better than persistence in predicting the Tmax anomalies over India in both of 
these months and the ACC skill score is lower, but comparable to that of the CFS reforecast 10-day predictions 
(Table 1). The modest ACC value of the CFS reforecast indicates the 10-day prediction of Tmax anomalies over 
India in April and May is challenging. The low skill scores of persistence and CFS predictions in April and May 
maybe indicating a prediction barrier in these months, which needs further investigation. We further evaluated 
the predictions of machine learning models for the months of April and May and the results are discussed in 
the following sections.

Frequency distribution of Tmax predictions
The machine learning model for predicting daily Tmax anomalies should realistically predict both the negative 
and positive anomalies to be useful for real-time forecasting. So, we compared the first four statistical moments 
(mean, standard deviation, skewness, and kurtosis) along with the 95% cutoff low and high of the time series of 
predicted Tmax anomalies with the observed Tmax anomalies of IMD. Models with similar statistical properties 
to those of IMD Tmax anomalies are considered to be adequate for predictions.

The time series of the IMD area averaged Tmax anomalies over the region of large standard deviation in 
the northern parts of India (Fig. 1b) in Apr over the period 1999–2020, has a standard deviation of 2.8°C, and 
is slightly negatively skewed (− 0.30), with kurtosis of − 0.14 (Fig. 2a). The predicted Tmax anomalies in April 
of both CFS (Fig. 2b) and AdaBoost(MLP) (Fig. 2c) have biases in the first four statistical moments compared 
to the IMD Tmax anomalies. The Tmax anomalies of the CFS predictions are slightly positively skewed (0.19) 
with a kurtosis of -0.70 relative to the normal distribution (Fig. 2b). Also, the 95% cutoff low and high values of 
the predicted time series are small (− 4.2 and 4.2) compared to the IMD values (− 4.8 and 6.2). The AdaBoost 

Table 1.  ACC, RMSE of the predictions and model configuration of the optimum ML model.

Persistence CFS ML model

March [0.39; 2.97]
{0.38; 2.97} [0.72; 2.00]

[0.27; 2.71]
{0.34; 2.63}
Model configuration:
AdaBoost (MLP); Norm; avg of (RELU ADAM, RELU LBFGS, TANH ADAM, TANH LBFGS; 
nproc:2–20 )

April [0.15; 3.77]
{0.22; 3.45} [0.49; 2.64]

[0.33; 2.77]
{0.35; 2.76}
Model configuration:
AdaBoost (MLP); Norm; PCA; RELU ADAM, avg of nproc:15 and 16

May Reg1 [~ 0.0; 3.53]
{0.19; 3.41} [0.47; 2.3]

[0.33; 2.56]
{0.28; 2.80}
Model configuration:
AdaBoost (MLP); Std; PCA; avg of (RELU ADAM, TANH LBFGS; nprocs:10–20)

May Reg2 [0.08; 2.81]
{0.18; 2.78} [0.32; 2.41]

[0.36; 2.42]
{0.28; 2.74}
Model configuration:
AdaBoost (MLP); Std; RELU ADAM, avg of nproc: 10–20

June [0.38; 2.70]
{0.32; 2.76} [0.62; 2.16]

[0.46; 2.25]
{0.44; 2.23}
Model configuration:
AdaBoost (MLP); RELU ADAM, avg of (Norm, Norm PCA, Std, Std PCA, Power, Robust; 
nproc: 2–14)

[corr; rmse] for the period 1999–2020; {corr; rmse} for the period 1982–2020
corr: correlation coefficient; rmse: root mean square error
Std: Standardization; Norm: Min–Max Normalization
Activation Function: RELU, TANH; Solver: ADAM, LBFGS
nproc: Number of processors; PCA: Principal component analysis
MLP: Multi layer perceptron

Table 2.  List of models and experiments.

Models

(i) Adaptive boosting (Adaboost) and (ii) Bagging regressor (BagReg) with base estimators
(a) Decision tree regressor
(b) Multi-Layer perceptron (MLP) regressor*
(c) Support Vector Machine regressor (SVR)
(iii) Gradient Boosting (GBM) regressor
(iv) CatBoost regressor
(v) Light Gradient Boosted Machine (LightGBM) regressor
(vi) XGBoost regressor
*Experiments with MLP by varying
(a) number of neurons from 2 to 20 for March–May and from 2 to 14 for June
(b) activation functions RELU and TANH
(c) solvers LBFGS and ADAM

Pre-processing (i) Standardization, (ii) Min–Max normalization, (iii) Power transformation, (iv) Robust scaler; (v) Principal component 
analysis (PCA)
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(MLP) predicted Tmax anomalies are positively skewed and the model has difficulty in predicting the negative 
Tmax anomalies (Fig. 2c) in April. The 95% cutoff low and high values (-2.9 and 3.5) are smaller than that of 
the IMD values.

In May there are two regions of large standard deviation in Tmax, one located over the northern parts of India 
(Reg1) and the other over the southern parts (Reg2) of India (Fig. 1c). The area-averaged standard deviations 
of the IMD observed Tmax anomalies over the regions Reg1 and Reg2 are 2.5°C (Fig. 2d) and 2.2°C (Fig. 2g), 
respectively over the period 1999–2020. The time series over both regions are slightly negatively skewed with 
values of -0.54 and -0.84. Also, the time series are leptokurtic with Reg2 having a higher value (1.81) compared 
to Reg1 (0.29) indicating the time series of Reg2 has fatter tails and a narrow peak in the frequency distribution. 
The 95% cutoff range of Tmax anomaly is also higher over Reg1 (5.5°C) compared to Reg2 (4.4°C) indicating 

Figure 2.  Frequency distribution (Number of days versus Tmax anomaly ranges) of time series of (a) IMD, (b) 
CFS, (c) AdaBoost(MLP) in April, (d) IMD, (e) CFS, (f) AdaBoost(MLP) in May over Reg1, (g) IMD, (h) CFS, 
and (i) AdaBoost(MLP) in May over Reg2.
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the extreme temperatures over Reg1 to be higher compared to Reg2. The Tmax anomalies of the CFS 10-day 
predictions over both Reg1 (Fig. 2e) and Reg2 (Fig. 2h) have a 95% high cutoff that is smaller compared to that 
of IMD value indicating the CFS model fails to predict the extreme temperatures in May. The 95% high cutoff 
of AdaBoost(MLP) over Reg1 (Fig. 2f) and Reg2 (Fig. 2i) is higher than that of the CFS predicted values though 
lower than that of the IMD values over Reg11. For Reg2, the AdaBoost(MLP) predicted (Fig. 2i) more days with 
Tmax anomalies exceeding 5°C compared to the IMD Tmax anomalies (Fig. 2g).

The above analysis indicates the predicted Tmax anomalies have biases in the frequency distribution for 
various ranges of temperature. However, it is evident from Fig. 2 that the models could generate extreme Tmax 
anomalies, exceeding 4 °C, in both April and May over India. We analyze those in the following section.

Hit rate versus False alarm rate
The prediction of extreme Tmax anomalies by the models does not guarantee that the model predictions are 
accurate, as there may be many false alarms in the predicted daily values with mismatches in the predicted daily 
Tmax anomalies. We examined the hit rate (HR) vs. false alarm rate (FAR)25 of the predicted time series to see if 
the sign and magnitude of the predicted daily Tmax anomalies on a given day matched those of the IMD observed 
on that day. HR is defined as HR = hit/(hit + miss), where a hit is when an event (Tmax anomaly of particular 
magnitude and sign on a particular day) occurred and was successfully predicted, miss is when an event occurred 
but was not predicted, and FAR = (false alarm)/(false alarm + correct rejection), where a false alarm is when an 
event was predicted but did not occur and correct rejection is when an event did not occur and was not predicted. 
A prediction is considered to be skillful if HR is greater than FAR. The HR and FAR were calculated for both 
positive and negative predicted Tmax anomalies for various threshold values. For positive Tmax anomalies the 
HR and FAR were calculated for the threshold values and the results of the analysis are shown in Fig. 3.

The AdaBoost(MLP) has lower HR compared to CFS for smaller positive temperature thresholds from > 0.0 °C 
to > 2.5 °C but performs better than the CFS model for thresholds above 3.0 °C (Fig. 3a). For a threshold 
of > 3.0 °C, the AdaBoost(MLP) model has 35 hits, 87 misses, 18 false alarms and 403 correct rejections, with 
a HR value of 0.286 and FAR value of 0.03 whereas the CFS model has 35 hits, 87 misses, 21 false alarms and 
397 correct rejection with a HR of 0.286 and FAR of 0.05. For threshold > 4.0 °C the AdaBoost(MLP) has HR of 
0.16 ( 9 hits and 47 misses) and FAR of 0.02 (13 false alarms and 471 correct rejections) whereas CFS has HR of 
0.07 (4 hits and 52 misses) and FAR of 0.01 (7 false alarm and 477 correct rejection) (Fig. 3a). These indicate the 
AdaBoost(MLP) does slightly better than CFS in predicting the extreme positive Tmax anomalies over India in 
April. The AdaBoost(MLP) has a large bias in predicting extreme negative Tmax anomalies over India (Fig. 2c) 
which is also reflected in the plot of HR vs FAR for the negative Tmax anomalies (Fig. 3b). The HR is comparable 
to FAR for all the ranges of thresholds for the negative Tmax anomalies of the AdaBoost(MLP) model indicat-
ing the model has no skill in predicting the negative Tmax anomalies in April. The CFS model has higher HR 
compared to FAR for all the ranges of negative temperature anomalies (Fig. 3b).

In May, over Reg1, the CFS has higher HR compared to AdaBoost(MLP) for the positive Tmax anoma-
lies for the thresholds from > 0.0 °C to > 3.0 °C (Fig. 3c). However for the thresholds > 3.5 °C and > 4.0 °C the 
AdaBoost(MLP) has higher HR compared to the CFS reforecast predictions along with higher FAR (Fig. 3c). For 
threshold > 3.5 °C, AdaBoost(MLP) has HR of 0.12 (8 hits and 57 misses) and FAR of 0.02 (14 false alarm and 479 
correct rejection) whereas CFS has HR of 0.11 (7 hits, 58 misses) and FAR of 0.004 (2 false alarm and 491 correct 
rejection). The AdaBoost(MLP) has an HR of 0.12 (4 hits and 28 misses) and FAR of 0.02 (10 false alarms and 
516 correct rejections) and CFS has an HR of 0.06 (2 hits and 30 misses) and FAR of 0.004 (2 false alarm and 524 
correct rejection) for threshold > 4 °C (Fig. 3c). The results indicate the performance of CFS and AdaBoost(MLP) 
is comparable in predicting the extreme positive temperature anomalies though AdaBoost(MLP) has a slightly 
higher number of false alarms compared to CFS. Both CFS and AdaBoost(MLP) have higher HR compared to 
FAR over all the thresholds in the predicted negative Tmax anomalies with CFS reforecast performing better 
with higher HR and lower FAR compared to AdaBoost(MLP) predictions (Fig. 3d).

Both CFS and AdaBoost(MLP) failed to predict the extreme temperatures > 4.0 °C in May over Reg2 (Fig. 3e). 
The AdaBoost(MLP) has an HR of 0.00 (0 hits and 8 misses) and FAR of 0.01 (9 false alarms and 541 correct rejec-
tions) whereas CFS has an HR of 0.00 (0 hits and 8 misses) and FAR of 0.02 (10 false alarms and 540 correct rejec-
tion) for temperature threshold > 4.0 °C. For the temperature threshold of > 3.5 the AdaBoost(MLP) has slightly 
higher HR compared to CFS. The AdaBoost(MLP) has HR of 0.13 (3 hits and 19 misses) and FAR of 0.05 (27 false 
alarm and 509 correct rejection) whereas CFS has HR of 0.00 (0 hits and 22 misses) and FAR of 0.04 (22 misses 
and 514 correct rejection) for threshold of > 3.5 °C. For other positive temperature thresholds > 0.0 °C to > 3.0 °C 
the CFS has higher HR and lower FAR compared to the AdaBoost(MLP) predictions. The AdaBoost(MLP) has 
higher HR and lower FAR in predicting the negative Tmax anomalies in May over Reg2 (Fig. 3f).

The above analysis shows that the machine learning model AdaBoost(MLP) is suitable for predicting the 
extreme positive temperatures over India in April and May. AdaBoost(MLP) has performance similar to that of 
CFS in predicting extreme positive temperatures > 3.5 °C and > 4.0 °C in April and May over India.

Feature importance of the input attributes in the Tmax anomaly prediction
As discussed in the previous section, the AdaBoost(MLP) model shows good skill in predicting extreme Tmax 
anomalies over India in April and May. The skills are comparable to the CFS reforecast predictions. In this section 
we attempt to better understand the features which have contributed to the prediction of the Tmax anomalies in 
the AdaBoost(MLP) models, thereby getting an idea of the variables important for predicting the Tmax anoma-
lies. For this, we used the permutation feature  importance26 technique, a tool that is part of scikit-learn software. 
The permutation importance of an input attribute is calculated by randomly shuffling the attribute and measur-
ing the decrease in model score. A large drop in score indicates the input attribute to be relatively important for 
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the model prediction. After calculating the feature importance of the attributes in predicting Tmax anomalies 
for all the years 1982–2020, the input attributes were ranked. The feature with the higher rank is considered to 
have contributed relatively more to the model predictions. The ranking of the input attributes for the identified 
models and their variation over the years is shown in Fig. 4a–e. As discussed before, the input attributes were 
derived based on correlation analysis. The correlation does not imply causation. The input attributes may be 
just statistical artifacts and may not be really responsible for causing variation of Tmax anomalies over India. To 

Figure 3.  The left and right panels show hit rate vs. false alarm rate for positive and negative temperature 
anomalies, respectively, for predictions made by CFS (black) and AdaBoost(MLP) (red) models in April (a, 
b), May-Reg1 (c, d), May-Reg2 (e, f) from top to bottom. The positive temperature anomalies are defined as 
temperatures above 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 °C, and are shown with numbers 9, 8, 7….1 on the 
plot as indicated in each panel. Similarly, the negative temperature anomalies are defined as temperatures below 
0.0, − 0.5, − 1.0, − 1.5, − 2.0, − 2.5, − 3.0, − 3.5, and − 4.0 °C, and are also shown with numbers 9, 8, 7….1 on the 
plot.
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identify the input attributes which would have caused the variations of Tmax anomalies over India we applied the 
Granger causality test to the input attributes with higher ranks (rank < 5) as these input attributes would have a 
relatively higher effect on the predictions. Granger-causality is a statistical technique that is helpful to determine 
if one time series is likely to influence the change in another i.e., if one time series can be used to predict the 
other time series. In our study, we used the “grangertest” function of “lmtest” package of “R software” to imple-
ment the Granger causality test. The physical processes through which the input attributes, identified through 
Granger causality, contribute to the Tmax variations of Tmax over India can be investigated through numerical 
model experiments, which we intend to carry out in future studies.

In April, PCA was applied to the input after Min–Max normalization before feeding the data to the 
AdaBoost(MLP) model (Table 1), with preserving 95% of the variance in the data as mentioned in methods 
section. The number of components selected by the algorithm varied from 15 to 17 for the predictions of April 
Tmax anomalies for the period 1982 to 2020 using leave-one-year-out cross-validation. The explained variance 
ratio i.e. the percentage of variance explained by each of the selected components for one of the years is for 
example 0.2817, 0.1661, 0.0849, 0.0677, 0.0560, 0.0473, 0.0454, 0.0355, 0.0316, 0.0265, 0.0240, 0.0218, 0.0179, 
0.0168, 0.0157, 0.0124) ie the PC0 explains about 28.2%, PC1 explains about 16.6%, PC2 explains about 8.5% and 
so on. We obtained the relative importance of each of the principal components using the permutation feature 
importance technique and the ranks of the principal components contributing most to the April predictions are 
shown in Fig. 4a. Only the ranks for PC0-PC14, which are common in all the predictions, are shown in Fig. 4a. 
As expected, the PC0 which explains a large variance (about 28%) is relatively more important compared to other 
principal components, followed by PC1, PC3 and PC2. The PC4-PC15 contributions have large variations in the 
ranking in the predictions (Fig. 4a). After identifying the relatively important principal components we identified 

Figure 4.  a) Ranking of input attributes using permutation feature importance techniques for April, b) Input 
variables contributing most to the principal components PC0, PC1, PC2 and PC3 over the period 1982–2020 
(c) same as (a) but for May Reg1 (d) same as (b) but for May Reg1 and (e) same as (a) but for May Reg2. The 
whiskers show the variation of rank in predicting Tmax anomalies from 1982 to 2020.
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the input variables which are most important to those principal components by using the “component_” attrib-
ute of Scikit-learn PCA implementation. The input variable with a large “explained_variance_” is output by 
the attribute and considered the most important input variable contributing to that principal component. We 
obtained such values for all the predictions and the results are shown in Fig. 4b.

The input attribute over region 6 and region 8 of Fig. 5b contribute most to the principal component PC0 
(Fig. 4b), region 1 contributes most to PC1, region 12 and region 17 contribute most to PC2 though region 6 and 
11 contribute in two of the years (Fig. 4b) and region 17 contributes most to PC3 (Fig. 4b). We verified using the 
Granger causality test if the input from these identified regions can Granger cause Tmax anomalies over India. Of 
the identified regions we find that regions 6, 8, and 17 can Granger cause Tmax anomalies over India. For other 
regions (1 and 12) the causality test is not statistically significant so it is difficult to explain physically how the 
input from these regions would have contributed to the prediction of Tmax anomalies over India. The physical 
mechanism through which SST over regions 8 and 17 can cause variation in Tmax anomalies over northern parts 
of India is not clear and needs model experiments to clarify their influence. The SST variation over region 6 is 
mostly a response to the variation in the atmospheric processes and those atmospheric processes can propagate 
to the northern parts of India and cause variations in the temperature over  India27.

PCA was applied to the input after standardization before providing the data to the AdaBoost(MLP) model 
(Table 1) in May for predicting Tmax over Reg1. The number of components selected by the algorithm varied 
from 15 to 17 for the predictions of May Tmax anomalies over Reg1 for the period 1982 to 2020 using leave-
one-year-out cross-validation.

Figure 5.  Regions of significant correlation between the Tmax anomalies over the regions of large standard 
deviation over India (marked in Fig. 1) and spatial distribution of 10-day lead SST, Soil moisture, and 200 hPa 
geopotential height anomalies in (a) March, (b) April, (c) May (Reg1), (d) May (Reg2) and e) June. The area 
averages of the variables over the regions indicated by the boxes are the input attributes to the models.
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The relative importance of each of the principal components using the permutation feature importance tech-
nique and the ranks of the principal components contributing most to the May predictions are shown in Fig. 4c. 
Only the ranks for PC0-PC14, which are common in all the predictions, are shown in Fig. 4c. The PC0 which 
explains a large variance (about 25%) is relatively more important compared to other principal components, 
followed by PC1, PC3, and PC2.

The regions 7, 1, 21, 23,19, 8, and 10 shown in Fig. 5c contribute most to PC0, PC1, PC2, and PC3 (Fig. 4d). 
Granger causality test shows regions 1, 7, 19 and 10 can Granger cause Tmax anomalies over India. Region 1, 
located over the equatorial Pacific (Fig. 5c), can affect the Tmax anomalies over India through an atmospheric 
teleconnection in response to the heating associated with the SST anomalies over region 1 and can extend to 
the northern parts of India and affect the Tmax variations over Reg1 in May. However, the physical processes 
through which the other regions can cause variations of Tmax over India need to be understood through numeri-
cal model experiments.

Of the regions shown in Fig. 5d, SST anomalies over regions 8, 18, 17, 6 19, and 13 are relatively more 
important in the prediction of Tmax anomalies over India in May over Reg 2 compared to the input from other 
regions (Fig. 4e). The Granger causality test showed that regions 6 of the above six regions to Granger cause 
Tmax anomalies over the coastal regions of India. The physical processes through which the SST anomalies over 
region 6 can affect the Tmax anomalies over India are not clear and careful model experiments are needed to 
understand the physical processes.

Discussion
In this study, we attempted to predict daily Tmax anomalies over the regions of large standard deviation in Tmax 
over India using machine learning models in the months of March-June. We validated 10 machine learning 
models to check their usefulness in predicting the Tmax anomalies. We carried out several model experiments 
varying the preprocessing method of input data time series, experiments with feature reduction using PCA, vary-
ing the activation function, and varying the number of neurons in the models with MLP as the base estimator.

Based on the analysis of statistical moments of the predicted time series of the Tmax anomalies, on the cor-
relation between the predicted Tmax anomalies and IMD observed Tmax anomalies, and RMSE between the 
predicted and observed Tmax anomaly time series, we tried to identify an optimal model. As we had a large 
number of predictions from model experiments, we generated ensembles by using various models and evalu-
ated them to identify an optimal model. The results showed the ensemble average of AdaBoost with MLP as the 
base estimator with varying numbers of neurons to outperform the other 9 machine learning models and their 
ensemble averages with a higher hit rate and a lower false alarm rate at extreme temperatures in the months of 
March–May. The correlation coefficient of the predicted time series by the optimal model is modest (Table 1) 
but is statistically significant at the 99.9% confidence level using Student’s 2-tailed test due to a large number of 
data points in each month, March, May Reg1, May Reg2 has 1209 data points and Apr, June has 1170 data points. 
Benchmarking the AdaBoost(MLP) results with the persistence and CFS reforecast 10-day predictions showed 
the AdaBoost(MLP) to perform better than persistence in predicting Tmax anomalies in April and May over 
India. The performance of AdaBoost(MLP) is also similar to that of CFS in predicting extreme temperatures 
in April and May. However, AdaBoost(MLP) does no better than persistence in March and June indicating the 
model to be not much useful in predicting Tmax anomalies over India in those months. The results indicate 
the machine learning models can complement the existing state-of-the-art numerical models in predicting the 
Tmax over India in the months of April and May, the months in which the numerical models also have difficulty 
in generating useful predictions.

The analysis based on the permutation feature importance showed the regions of relative importance in the 
prediction of Tmax anomalies over India. Using the Granger causality test showed some of these relatively impor-
tant regions to Granger cause Tmax anomalies over India. In April, the SST over the North Atlantic is found to 
be relatively important in predicting the Tmax anomalies over India. In May (Reg1) the SST related to ENSO is 
found to be one of the relatively important inputs to predict Tmax anomalies. The physical processes through 
which other relatively important input attributes contribute to the variation of Tmax anomalies over India are 
not clearly understood. It would be interesting to carry out numerical model experiments to understand them.

One of the caveats of this study is that we predict only the area averaged value of the Tmax anomalies over 
the regions of large standard deviation in Tmax over India. In the future, we plan to extend this work to predict 
Tmax anomalies over all the grid points covering India.

The Tmax anomaly predictions in this study are solely based on input attributes derived from observed or 
analyzed estimates of SST, soil moisture, and 200 hPa geopotential height anomalies. A vast amount of data from 
the numerical weather prediction models are available which can be used to train the machine learning models to 
improve the prediction of Tmax anomalies. Also, using a more complex deep learning model trained on observed 
and numerical weather prediction model output may help in improving the prediction of Tmax anomalies with 
higher skill. We plan to carry out such hybrid model studies in the future.

Methods
Models
In this study, ten different machine learning models (Table 2) are evaluated for their ability to predict 10-day 
lead daily Tmax anomalies over India in the months March-June. The study covers the period 1982–2020, the 
period of availability of the IMD Tmax data. The machine learning models validated in this study are the Ada-
Boost (Adaptive Boosting)28,29 regressor with (i) Decision tree  regressor30 (ii) Multi-layer Perceptron (MLP)31 
regressor and (iii) Support Vector Machine regressor  (SVR32) as the base estimators; (iv) Gradient Boosting 
regressor (GBM)33; (v) CatBoost  regressor34 (vi) Light Gradient Boosted Machine (LightGBM)35 regressor (vii) 
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 XGBoost36 regressor; and Bagging  regressor37 (BagReg hereafter) with (viii) Decision tree regressor (ix) MLP 
(x) SVR as base estimators. The GBM, CatBoost, LightGBM, and XGBoost use a tree-based regressor as the 
base estimator. All the above models are implemented using the Scikit-learn38 toolbox (https:// scikit- learn. org/ 
stable/). A detailed description and implementation details of the machine learning models can be found on the 
scikit-learn webpages and in the cited references.

The MLP is one of the widely used machine learning techniques in climate  science39–46. The MLP regressor 
consists of an input layer, a hidden layer, and an output layer. The model predictors are fed to the input layer, non-
linear relations between the input predictors are obtained in the hidden layer, and the weights obtained from the 
hidden layer are used to predict and output results through the output layer. The results of the MLP regressor are 
sensitive to the choice of the number of neurons used in the hidden layer. The results of MLP regressor are also 
sensitive to the choice of the activation function and the solver. In this study, we carried out several experiments 
by varying the number of neurons, the activation function, and solvers.

The SVR is also extensively used for prediction in climate  sciences47–49. The SVR obtains a non-linear rela-
tion between the input predictors and the weights of the relation are used to predict the future values. In this 
study, we used the SVR with ‘rbf ’ kernel and the kernel coefficient ‘gamma’ with the default ‘scale’ option. The 
regularization parameter ‘C’ is set to the default value of 1.

The decision tree regressor predicts the target variable from the regression tree developed from the predictors 
based on certain decisions. The tree is developed from the predictors with the least mean square error. We used 
the default values of the tunable parameters specified in the Scikit-learn toolbox for the decision tree regressor.

To improve the skill and robustness of the MLP, SVR, and decision tree regressor predictions, ensemble 
methods such as averaging and boosting are used. In the averaging method, several predictions are generated 
by sampling the predictors and the average of the predictions is generated. The ensemble-averaged predictions 
are better than any single prediction because it reduces variance and hence overfitting. The “Bagging regressor” 
belongs to the class of averaging methods. The boosting methods combine several weak learners to produce 
a powerful ensemble i.e., first a model is built from the training data, then a second model is built to reduce 
the errors in the first model. This process is continued sequentially till model bias is reduced. The “AdaBoost”, 
“GradBoost”, “CatBoost”, “LGBM”, and “XGBoost” belong to the class of boosting methods. In this study, Ada-
Boost and Bagging regressor with MLP, SVR, and decision tree as base estimators are evaluated. “GradBoost”, 
“CatBoost”, “LGBM” and “XGBoost” have a decision tree as the base estimator. The number of estimators for 
Bagging and Boosting was set to 100 in our study. All the boosting algorithms were used with default values for 
the tunable parameters.

Several model experiments were carried out to identify a machine learning model predicting daily Tmax 
anomalies realistically. The preprocessing of the input attributes to bring them to a similar scale is an essential 
step in machine learning. There are several techniques to preprocess the data, such as standardization, min–max 
normalization, power transformation, and robust scaler technique. In the standardization technique, the mean 
of each input attribute is removed and then each attribute is scaled by the standard deviation of the attribute. 
The mean and standard deviation of the training data set are first calculated and then the whole dataset (train-
ing + testing data) is standardized with the obtained standard deviation. In min–max normalization, the whole 
data set is brought within the range [0,1]. In the Robust scaler method, the median is first removed and the 
data is scaled according to the quantile range, which makes this method robust to outliers. In the power trans-
form method, a power transformation is applied to each input attribute to make the data more gaussian-like, 
which stabilizes the variance, and minimizes skewness. In all the preprocessing techniques, scaling parameters 
are obtained from the training data, and applied to both the training and test datasets. All four preprocessing 
techniques were applied to scale the input attributes in all the months of Mar-Jun and input to all the 10 models 
thereby generating many experimental model predictions for evaluation.

Feature reduction techniques such as principal component analysis (PCA)50 are often found to be useful in 
improving the skills of machine learning models. PCA is a statistical technique to convert high-dimensional 
data to low-dimensional data by retaining the data which explains most of the variance. The PCA was applied 
to the input predictors to reduce the features. We used the PCA technique to generate experimental predictions 
for all 10 models. Model experiments were generated by preprocessing the input attributes by standardization 
and min–max normalization before applying the PCA to reduce the features and then input to the models. The 
features which explain 95% percent of the variability are used as input to the models (n_components = 0.95). By 
setting “n_components = 0.95” in the Scikit-learn PCA implementation, the algorithm chooses the number of 
components that explain 95% of variance.

The MLP has an option to increase the number of neurons. We varied the number of neurons from 2 to 20 
to generate additional model experimental predictions for March–May and from 2 to 14 for the June predic-
tions. The range for varying the number of neurons was decided based on the number of input attributes to 
the MLP model (Fig. 5). The MLP results are also sensitive to the activation function and the solver. We tested 
two activation functions viz. TANH and  RELU51 and two solvers ‘LBFGS’ (Limited-memory Broyden-Flecher-
Goldfarb-Shanno algorithm) and ‘ADAM’ 52 with the models with MLP as base estimators. In summary, the 
model experiments for each month were configured by (i) varying the preprocessing method, (ii) feature reduc-
tion using PCA, and (iii) varying the number of neurons, activation function and solver in the MLP. The first 
two (i, ii) were applied to all 10 models and (iii) was applied to those models with MLP as the base estimator. In 
total, 960 model predictions were generated for each of Mar-May months and 670 for June. The evaluated model 
experiments in the study are tabulated in Table 2  for clarity. We evaluated these experimental predictions to 
identify a model with reasonable skill in predicting Tmax anomalies in those months.

Leave-one-year-out cross-validation is used to generate the predictions. For example, to predict the Tmax 
anomalies of March 2020, we use the daily data of March from 1982 to 2019 for training and predict the daily 
Tmax anomalies of all 31 days of March 2020 with the trained models. This process is repeated to obtain the 

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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predictions of March for all the years from 1982 to 2020. A similar technique is applied to obtain the daily pre-
dictions for the months of April, May, and June.

Predictors
The hot weather conditions over India can be partly explained by variations in the sea surface temperature (SST) 
in the equatorial Pacific 2 and variations in the blocking events over high  latitudes27. The variations in the SST 
in the equatorial Pacific affect the precipitation over India and thus the quantity of soil moisture over the Indian 
landmass, though with a lag of several months. Therefore, we use these variables at a lead time of 10 days as the 
input attributes or predictors for the machine learning models to predict Tmax anomalies. The input attributes 
are derived from the SST, soil moisture, and 200 hPa geopotential height anomalies based on the correlation 
between the regions of large standard deviation in Tmax in each month (rectangular region marked in Fig. 1) and 
10-day lead SST, soil moisture and 200 hPa geopotential height anomalies. The correlated regions, with statisti-
cal significance at 99.9% level using Student’s 2-tailed t-test, in the months March-June are shown in Fig. 5. The 
area average of the statistically significant regions, shown in Fig. 5, is given as the input to the machine learning 
models. There are 21 input attributes in March (Fig. 5a), 22 in Apr (Fig. 5b), 24 (21) input attributes in May for 
prediction over Reg 1 (Reg2) (Fig. 5c, d), and 16 input attributes for prediction of Jun (Fig. 5e) Tmax anomalies. 
A correlation heatmap of the input attributes (Fig. 6a–e) shows the input attributes to have low correlation coef-
ficients with each other in all the months Mar–June indicating the identified input attributes to be independent 
and useful as predictors for the machine learning models. The Tmax dataset from  IMD53 was used in this study 
for training and validation of the machine learning models. The daily Tmax data is at a horizontal resolution of 

Figure 6.  (a–e) Correlation heatmap showing the correlation between the input attributes in March, April, May 
(Reg1), May(Reg2) and June.
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1° × 1° and covers the period of the study 1982 to 2020. The daily NOAA OI SST V2 High-resolution  dataset54 
along with the daily ERA5 global  reanalysis55 variables (soil moisture and geopotential height at 200 hPa) were 
used in the study. The daily SST and ERA5 datasets were interpolated to 1° × 1° horizontal resolution to match 
the resolution of Tmax dataset. The daily SST and soil moisture were smoothed using a 5-day running mean as 
the daily observed/reanalyzed values of these slowly varying variables are noisy. The daily anomalies of all the 
variables Tmax, SST, soil moisture, and 200 hPa geopotential were derived by removing their respective daily 
climatology (base period 1982–2020).

Climate forecast system reforecast
The results of the predictions from the machine learning models are benchmarked against 10-day (i) persistence 
forecasts and (ii) the Climate forecast system (CFS) reforecasts. Persistence forecasts are obtained by assum-
ing that the Tmax anomalies observed on the forecast initial date persist for the next 10 days. The models with 
smaller anomaly correlation coefficient (ACC) and higher root mean square error (RMSE) than the persistence 
forecast are considered to have no skill.

The U.S. National Centers for Environmental Prediction (NCEP) CFS reforecasts were produced with the 
operational CFS version 2 (CFSv2)  model56 at a resolution of T126. The CFS reforecasts are initialized with CFS 
reanalysis at 00z, 06z, 12z, and 18z and the predictions are generated for the next few months for each initial 
condition. We used the 10-day predictions of Tmax from these reforecasts in this study. The 10-day predictions 
from the CFS reforecast data are available from 1999 to 2020 for all the months March-June. However, the 10-day 
predictions in the years 2005–2008 are missing on several days when last accessed (data was last accessed on the 
NCEI site https:// www. ncei. noaa. gov/ produ cts/ weath er- clima te- models/ clima te- forec ast- system on 19th May 
2023). We compared the predictions of the machine learning models with the CFS 10-day predictions for the 
years 1999–2020 discarding the predictions for the missing years 2005–2008.

Data availability
Data used for analysis and machine learning model input are openly available. The Tmax data from IMD, India is 
available from https:// www. imdpu ne. gov. in/ lrfin dex. php (on the page one has to click the “Gridded data Archive” 
button to go the download page) (page last accessed 1st August 2023). The SST data is available from https:// psl. 
noaa. gov/ data/ gridd ed/ data. noaa. oisst. v2. highr es. html (page last accessed 1st Aug 2023). The ERA5 soil moisture, 
200hPa geopotential height and UTCI data are available from Copernicus Climate Change Service (C3S) climate 
data store (https:// cds. clima te. coper nicus. eu/# !/ search? text= ERA5& type= datas et; page last accessed 1st August 
2023). The CFSreforecast 10-day predictions are available from the webpage https:// www. ncei. noaa. gov/ produ 
cts/ weath er- clima te- models/ clima te- forec ast- system (last accessed 1st August 2023).
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