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Anthropogenic climate change doubled
the frequency of compound drought and
heatwaves in low-income regions

Check for updates

Boen Zhang1,2, Shuo Wang 2,3 & Louise Slater 1

Compound drought-heatwaves have garnered widespread attention due to their catastrophic
consequences. However, little research has investigated inequalities in exposure to compound
drought-heatwaves under climate change. Here, we reveal a significant disparity between low-income
and high-income regions in terms of global compound drought-heatwave occurrence using
observations and climate models. We find that low-income regions experienced a 377% [351–403%]
increase in the frequency of compound drought-heatwaves from 1981 to 2020, which is twice as fast
as the increase observed in high-income regions (184% [153–204%]). This inequality is largely
attributed to a similar disparity in drought occurrence rather than heatwave occurrence. Climate
change attribution suggests that anthropogenic warming has doubled the frequency of compound
drought-heatwaves over 31% [14–50%] of low-income regions, compared to only 4.7% [0.9–8.3%] of
high-income regions. The frequency of compound drought-heatwaves would not have increased in
low-income regions without anthropogenic climate change but would still have risen in high-income
regions.

Climate shocks cause an average of over $300 billion in direct asset losses
and approximately 30,000 deaths every year1,2. Droughts and heatwaves are
among the climate shocks that lead to the largest human losses, accounting
for more than 50% of climate-related deaths3,4. There are rising concerns
regarding the frequent occurrence of compound events, which typically
result in disproportionate impacts to agriculture, ecosystems, health, and
energy5. For example, compound drought-heatwave events (CDHWs)
caused a total of approximately 40,000 deaths and a 25% loss of annual crop
yield6 in Europe and western Russia in the summers of 2003 and 2010.
CDHWs often cause extensive damages and deaths in lower-income
countries, where infrastructure systems tend to be less developed and the
agricultural sector tends to be the primary source of employment7–9. Recent
CDHWs in countries as diverse asKenya10, Tunisia11, Vietnam12, theUnited
States13, and Russia14 illustrate that the threat is a global reality. Rare and
major CDHWs can cause food crises and revert years of progress in poverty
reduction and development15.

CDHWs have receivedmuch attention around the world, especially in
developed regions where record-breaking CDHWs are well
documented16,17. The frequency of CDHWs has increased markedly across
the United States and Eastern China over recent decades18. The Sixth
Assessment Report (AR6) of the Intergovernmental Panel on Climate

Change (IPCC) alsofindshigh confidenceof increasedCDHWfrequency in
the last century as a result of anthropogenic climate change19. Yet, CDHW
dynamics in low-income regions remain unclear although these regions
have experienced major CDHWs. Compared to developed countries,
developing countries are particularly susceptible to the effects of CDHWs
due to high reliance on agriculture, limited water resources, weak infra-
structure, and vulnerable populations. For example, an unprecedented
drought compounded with repeated heatwaves hit the Horn of Africa from
October 2020 to October 2023, leading to a total of approximately 43,000
deaths in Somalia last year alone, with half of the fatalities among children
younger than 5 years of age20. Although previous studies have revealed the
global increases in CDHW occurrence3,21, our understanding of such
increases across the socioeconomic spectrum is incomplete.

In addition to the historical changes in the CDHW occurrence, a few
studies have attempted to assess the influence of anthropogenic climate
change on CDHW in light of its severe impacts on socioeconomic
development16,22,23. For example, one study revealed the positive effect of
anthropogenic global warming on CDHW in the top 10 most vulnerable
climate regions24. However, it remains unclear whether such impacts are felt
equally across the planet. Inequality in the impacts of anthropogenic climate
change on CDHW would raise critical questions of international justice
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since historical increases in greenhouse gas emissions largely result from
wealthy countries25. It is thus crucial to compare anthropogenic impacts on
CDHW across the socioeconomic spectrums.

Here we present an in-depth assessment of historical changes in global
CDHWsacross the socioeconomic spectrum to address the aforementioned
limitations. Using multiple observational products, we demonstrate that
although the CDHW occurrences have risen significantly in regions with
varying income levels from 1981 to 2020, they rose twice as fast in low-
income regions as in high-income ones. This inequality ismost likely due to
the unequal growth rates of drought occurrences between low-income and
high-income regions. We then utilize the Historical and Natural climate
simulations from the Coupled Model Intercomparison Project, Phase 6
(CMIP6) to assess inequalities in the impacts of anthropogenic climate
change on CDHWs across the socioeconomic spectrum. Employing
quantitative detection and attribution techniques, we find that human-
induced climate change is the driving factor behind the heightened fre-
quency of CDHWs in low-income regions, whereas high-income regions
would have observed an increase in CDHW frequency even without
anthropogenic influence. By offering global insights into CDHWs and
poverty, this study highlights the necessity of providing further support to
low-income countries to address the increasing threat of compound events
and to reduce inequalities in climate change-attributed increases
in CDHWs.

Results
Unequal increases in CDHW events
Weused theweekly self-calibrated PalmerDrought Severity Index (scPDSI)
and daily maximum temperatures derived from multiple observation pro-
ducts to identify summer CDHWs during the period 1981 to 2020 (see
“Methods”). We find that the CDHWs have been increasing significantly
(P < 0.05) over approximately 57%of global landareas, and these regions are
home to approximately 3.94 billion people, mainly located in Africa (40%),
East Asia (33%), Latin America (8%), and theMiddle East (4%) (see Fig. 1a
generated from the ERA5 reanalysis). Our results also suggest a prominent
spatial difference in the growth rate of CDHW occurrence and inequality
globally (Fig. 1b). Such difference is statistically significant at the 5% sig-
nificance level based on 500 bootstrap resampling and a two-tailed t-test
(Fig. 1c). Low-income regions are experiencing significantly (P < 0.05)more
rapid increases in CDHWs than high-income regions (following the
WorldBank’s 2020 income classification). CDHWs in low-income regions
have increased by 317% [257–377%] between the earlier and later periods
(1981‒2000 and 2001‒2020) in the last 40 years, but the increase is only
127% [70–184%] in high-income regions, especially in the United States
(USA) andEuropewhere the increases in the frequency ofCDHWsare only
55% [14–87%] and 73% [39–113%], respectively. In addition, accounting
for the uncertainty of precipitation and temperature datasets, we find that
there is a consistent difference between the high-income and low-income
regions in the growth ratesofCDHWoccurrence basedonmultiple datasets
(see Fig. 1b and Supplementary Figs. 1‒3). Although the growth rates of
CDHW occurrence in tropical Africa, home to some low-income and
lower-middle-income countries,may varywith the datasets used, consistent
increases are observed across all datasets.

In addition, there is a strong dependence between historical changes in
CDHWs and the fraction of population living in extreme poverty (i.e., on
less than $1.90 per day), with a Pearson correlation coefficient of 0.653
(P = 0.002; see Fig. 1d). This is estimated through aggregating locations by
ventiles (i.e., 20-quantiles) of the poverty rate from the latest edition of the
World Bank’s Global Subnational Atlas of Poverty (GSAP) and by graphing
the changing rate of CDHWoccurrences. CDHWs show an approximately
twofold increase (222% on average) in locations where the share of popu-
lation living in extreme poverty is lower than 10% between the early and
later halves of 1981–2020. In comparison, locations where the share of
population living in extreme poverty is higher than 90% are experiencing a
nearly fivefold increase (482%), on average, in the frequency of CDHWs.
Such a dependence becomes even stronger, with Pearson correlation

coefficients of 0.787 and 0.790 (see Supplementary Fig. 4), if we consider the
less stringent poverty definitions of $3.20 and $5.50 per day, respectively. In
addition to the frequency of CDHWs, similar inequalities also exist for the
historical changes in the severity of CDHWs (see Supplementary Fig. 5).

Drought dominates the unequal increases of CDHW events
To explain the unequal increases of CDHW events across the socio-
economic spectrum,we analyzed historical changes in the annual frequency
of droughts and heatwaves over the high-income (HIC) and low-income
(LIC) regions. All the datasets show statistically significant (P < 0.01)
increases in the annual frequency of both droughts and heatwaves (see
Fig. 2a‒b).We show there is noobvious difference between theHICandLIC
regions in terms of the growth rate for heatwaves, with slope values of 1.3%
and 2.2% per year, respectively (Fig. 2a). In comparison, a large difference is
observed for droughts, with slope values of 1.9% and 4.3% for the HIC and
LIC regions, respectively (Fig. 2b).

In addition, bootstrapping and t-test were also used to assess the sta-
tistical significance of the difference between the HIC and LIC regions in
terms of historical changes in the drought and heatwave occurrences. We
find that there is no consistently significant difference in terms of heatwaves
based on three datasets. Specifically, although the ERA5 and MERRA-2
temperature datasets show a significant (P < 0.01) difference in terms of
heatwaves, the CPC temperature dataset shows an insignificant (P = 0.56)
difference (Fig. 2c). In comparison, all the combinations of precipitation and
temperature datasets show a significant (P < 0.01) difference between the
HIC and LIC regions in terms of droughts (Fig. 2d). For example, the
average growth rates in drought occurrence based on the MERRA-2 tem-
perature and ERA5 precipitation are 1.6% and 3.8% over the HIC and LIC
regions, respectively. Therefore, one potential explanation for the differing
trends in CDHWs between LIC andHIC regions is the similar inequality in
drought occurrence rather than heatwave occurrence.

Unequal influence of anthropogenic climate change on CDHWs
We also analyzed the impacts of anthropogenic climate change on the
frequency of CDHWs. We quantified the impacts by estimating the like-
lihood of CDHW occurrences that can be attributed to anthropogenic cli-
mate change. The probability ratio concept was used to quantify the
likelihood of CDHWs occurring in historical conditions relative to natural-
only conditions26. Figure 3a displays probability distributions of the prob-
ability ratio derived using land pixels for each income group and shows a
general increase in the frequency of CDHWs under historical conditions
relative to historical natural-only conditions (i.e., probability ratios generally
greater than 1). We find a contrasting inequality in the effects of anthro-
pogenic climate change on the frequency of CDHWs between poorer and
wealthier countries. Specifically, 31%[14–51%]of landpixels in low-income
regions showmore than double increases in the frequency of CDHWs due
to anthropogenic forcing, versus only 4.7% [0.9–8.3%] of land in high-
income regions (Fig. 3a). We find a statistically significant (P < 0.05) asso-
ciation between the magnitude of anthropogenic impacts on CDHWs and
the share of population living in extreme poverty (living under $1.90
per day), with a Pearson correlation coefficient of 0.764 (Fig. 3b). Such a
dependence remains if one considers a higher poverty threshold of $3.20 (or
$5.50) (see Supplementary Fig. 6).

The upward trends in the frequency of CDHWs over low-income and
high-income countries are well reproduced by the state-of-the-art CMIP6/
ALL multi-model ensemble simulations (Fig. 4a and b). The ALL simula-
tions consider both anthropogenic climate forcings, such as the emission of
greenhouse gases and aerosols, and natural climate forcings like solar and
volcanic activities. The upward trends over high-income countries are also
captured by the CMIP6/NAT ensemble simulations, which solely account
for natural climate forcings (P < 0.01). However, the trends over the low-
income countries are not replicated by the CMIP6/NAT ensemble simu-
lations (P = 0.279). This indicates that the increase in the frequency of
CDHWs in low-income countries during the past 40 years is driven pre-
dominantly by anthropogenic climate change.
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We further used an optimal fingerprinting approach (seeMethods) to
estimate contributions from anthropogenic (ANT) and natural forcings
(NAT) to the observed changes in the frequency of CDHWs. The statisti-
cally significant non-zero scaling factors for ANT (ALL-NAT; anthro-
pogenic forcings) indicate that the ANT signal is detectable across all four
income groups (Fig. 4c). However, the NAT signal shows different results
for poorer (LIC and LMIC) and wealthier (UMIC and HIC) countries. The
inclusion of zero within the uncertainty range of scaling factors suggests a
failure to detect NAT forcings in poorer countries, whereas the exclusion of
zero in wealthier countries implies the detectability of NAT forcings. In
other words, although anthropogenic climate change has contributed to the
past increases in CDHWoccurrences, the magnitude of such contributions
is larger in regions with lower-income levels. Specifically, the ANT-forced
increases in the frequency of CDHWs are 19% [2–33%], 18% [6–26%], 17%
[9–23%], and 12% [5–18%] per decade for low-income, lower-middle-

income, upper-middle-income, and high-income countries, respectively,
during the period of 1981–2020.We therefore conclude that anthropogenic
climate change has made a larger contribution to the increases in the fre-
quency of CDHWs in poorer countries than in wealthier countries.

Discussion
The IPCC Sixth Assessment Report (AR6) indicates that CDHW events
have increased in nearly all land regions under global warming, but it
remains unclear whether inequality exists in the historical changes of
CDHWevents across socioeconomic levels. Our findings indicate that low-
income regions and countries are experiencing a faster increase in the fre-
quency and severity of CDHWs than middle- and high-income regions.
CDHWs are also growing twice as fast as the independent heatwave and
drought events (Supplementary Fig. 7). Poor regions are often less well-
equipped to cope with the increase in CDHWs due to their more limited

Fig. 1 | Historical increases in CDHW occurrences across different income
groups. aHistorical trends in the normalized frequency of CDHWs generated from
the ERA5 reanalysis dataset at the subnational level during the period of 1981–2020.
The frequency was normalized by calculating annual values as a fraction of the
1981–2020 local mean before estimating the historical trend. The slope (unit: year‒1)
is the linear trend based on Sen’s slope estimator. Hatching indicates regions where
the trend is significant at the 0.05 level based on a Mann–Kendall (MK) test. b Time
series of CDHWs spatially aggregated for four different income groups (see map in
Supplementary Fig. 12; HIC = high-income countries. UMIC = upper middle-
income countries. LMIC = lower-middle-income countries. LIC = low-income

countries). Dashed lines represent annual normalized occurrences of CDHWs, and
solid lines represent the MK trend based on the MK test. The slope and p-value are
the same as those in (a). c presents the 500 bootstrap samples of Sen’s slope estimates
for the annual frequency of CDHWs for HIC and LIC regions. d Global inter-
relationships between the share of population that is poor ($1.90 per day) and
changes in the frequency of CDHWs. Box extents in (c, d) are at the 25th and 75th
percentiles while the whiskers extend to the 2.5% and 97.5% percentiles. The red
dashed line represents the fitted linear regression between poverty rates (x-axis) and
median values of CDHW change (y-axis).
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Fig. 3 | Anthropogenic climate change impacts on
the frequency of CDHWs across different income
groups. Here, the probability ratio (PR) is used to
quantify the impacts of anthropogenetic forcing on
the frequency of CDHWs during the period of
1981–2020 (see Methods). a Each probability den-
sity function represents the PR distribution for an
income group and the percentage indicates the
fraction of regions in the HIC and LIC groups that
have experienced more than double in the anthro-
pogenic impacts on CDHWs. b Global inter-
relationship between the share of population that is
poor ($1.90 per day) and anthropogenic climate
change impacts on the frequency of CDHWs (i.e.,
the PR). The box extents and whiskers in b are the
same as those in Fig. 1. The red dashed line repre-
sents the fitted linear regression between poverty
rates (x-axis) and the PR (y-axis). The Pearson
correlation coefficient and its p-value are shown.

Fig. 2 | Historical changes in the annual frequency of heatwaves and droughts for
the high-income (HIC) and low-income (LIC) regions. Dashed lines in (a, b)
represent annual normalized occurrences of droughts and heatwaves, respectively.
The shaded regions represent the lower and upper ranges of Sen’s estimates, taking
into account the uncertainty of meteorological datasets (i.e., ERA5 and MSWEP
datasets for precipitation; ERA5,CPC, andMERRA-2 datasets for temperature). The
solid lines represent the median values of Sen’s estimates generated from different

meteorological datasets. The slope (unit: year‒1) is Sen’s slope estimate. *** indicates
the trend is significant at the 0.01 level based on a Mann–Kendall (MK) test.
c, d Present the boxplots of the 500 bootstrap samples of Sen’s slope estimates for the
annual frequency of heatwaves and droughts, respectively, for the HIC and LIC
regions. The box extents and whiskers in (c, d) are the same as those in Fig. 1.
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resources and forecasting capacities. Poverty exposure to an increased fre-
quency of CDHWs can exacerbate worker productivity losses and reduce
crop yields, pushing vulnerable households further into poverty and ham-
pering economic development in poor regions. We also identified a con-
trasting difference in historical trends in the frequency of CDHWs between
Global South and North regions. Regions of the Global North have
experienced only one-third of the increase in the frequency of CDHWs
experienced by regions of the Global South (Supplementary Fig. 8). These
detected spatial differences could put at risk the achievement of the United
Nations’ SustainableDevelopmentGoals which are to reduce poverty (Goal
1) and inequality within and between nations (Goal 10), as well as to take
urgent actions to combat climate change impacts (Goal 13).

The unequal historical increases in CDHW events across the socio-
economic spectrum can be largely attributed to the similar disparity in
drought occurrence rather than heatwave occurrence. Accounting for the
uncertainty of air temperature datasets, we find no significance in the
growth rates of heatwave occurrences between the high-income and low-
income regions. This is inconsistent with previous studies, which reveal that
populations in lower-income regions currently face a higher exposure to
heatwaves than those in higher-income regions27. In comparison, all the
datasets show a statistically significant difference between the high-income
and low-income regions in terms of historical changes in drought occur-
rence. This suggests that efforts to eliminate exposure inequality to com-
pound dry-hot events would benefit more from targeting the exposure
inequality of droughts than that of heatwaves.

Anthropogenic climate change has contributed to increases in the
frequency and severity of CDHWs globally (Supplementary Figs. 9 and 10).
However, our findings reveal that the effect of climate change is felt mostly
by low- and lower-middle-income regions since high- and middle-high-
income regions would have experienced an increase in the frequency of
CDHWs even without anthropogenic influences. By contrast, there is a
significant anthropogenic influence on the increase in the frequency of
CDHWs for low-income regions. Thus, our findings provide evidence of
social inequalities in the impacts of climate change on CDHWoccurrences.
Although developed and wealthy countries contribute substantially
(~60–80%25,28) to the global temperature rise, such anthropogenic emissions
do not appear to affect the occurrence of CDHWs in these countries.
Instead, they have a greater impact on regions with higher poverty rates,
especially African countries29.

Previous studies have mostly focused on individual extreme climate
events such as heatwaves27 and floods30 to analyze whether climate change
might have inequitable social impacts. Mounting evidence has shown that
concurrent occurrences of multiple extreme climate events are becoming
more frequent in a changing climate, with the potential to cause severe
socioeconomic impacts31. Our findings uncover the climate injustice in the
occurrence of CDHWs between poorer and wealthier countries. We argue
that an equally important line of inquiry should focus on how climate-
induced increases in compound events are having unequal social impacts32.

While the specific results of this study might vary depending on the
time period chosen, the overall conclusion of exposure inequality in the

Fig. 4 | Attribution of changes in CDHW across different income groups.
Observed and simulated frequencies of CDHWs for a low-income and b high-
income countries from 1981 to 2020. The solid black line in (a, b) indicates the
annual frequency of CDHWs based on the ERA5 reanalysis dataset (OBS), and solid
orange and green lines represent the ensemblemean results based onCMIP6 climate
model simulations with ALL (ANT+NAT) and NAT forcings, respectively (Sup-
plementary Table 1). The dashed lines represent the linear trend, and the shadings
show the 5 to 95% ranges based on the ensemble simulations of ALL and NAT,

respectively. cThe best estimates of the scaling factors for each income group and (d)
attributable increasing trends (unit: %/year) generated from a two-signal [ANT
(ALL-NAT) and NAT] analysis of changes in the frequency of CDHWs spanning
from 1981 to 2020. The error bars in (c, d) illustrate the uncertainty range of 5 to 95%
for the respective estimates. The frequency is calculated for each grid cell and then
weighted by the area of grid cells for different income groups with consideration of
the weights assigned to grid areas. The frequency is calculated for each year as the
area-weighted average of grid cells in different income groups.
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CDHW event would remain unchanged. By using only 30 years of data
(1991–2020), we have still revealed the unequal increases in CDHW events
(see Supplementary Fig. 11). In addition, previous studies also directly and
indirectly reinforce the conclusion. For example, Hao et al. assessed changes
in the frequency of CDHEs between the two periods 1951–1984 and
1985–20181, and their global result showed that poor regions experienced
greater increases thanwealthy ones although they did not provide a detailed
comparison analysis6. Our findings reveal that drought dominates the
unequal increases of CDHW events, and Winsemius et al.’s study showed
poor people are disproportionally exposed to droughts in 52 countries
during the period of 1960–199933.

Methods
Reanalysis and climate simulations
We use daily precipitation (P), daily maximum and minimum 2-meter air
temperature (Tmax and Tmin) datasets obtained from the European Centre
for Medium-Range Weather Forecasts Reanalysis 5 (ERA5), available at
0.25° spatial resolution for the period of 1981–2020. The ERA5 dataset
supersedes other reanalysis products due to its high spatial and temporal
resolutions34. Previous work has shown that it provides spatially robust
estimates of CDHW characteristics4,35. In addition, the daily Multi-Source
Weighted-Ensemble Precipitation (MSWEP) dataset is used to consider the
uncertainty of precipitation datasets36. The Modern-Era Retrospective Ana-
lysis for Research and Applications, Version 2 (MERRA-2)37 and Climate
Prediction Center (CPC)38 datasets are used to consider the uncertainty of
temperature datasets. Available water-holding capacity of the soil is obtained
from a soil texture-based global water-holding-capacity map39 and regridded
into 0.25° spatial resolution based on nearest neighbor interpolation.

Daily precipitation, Tmax, and Tmin datasets from an ensemble of 10
climate model outputs of the Coupled Model Intercomparison Project
Phase 6 (CMIP6) experiment are used in the historical simulations (Sup-
plementary Table 1) spanning from 1981 to 2020 under two scenarios,
including those based on all forcings (ALL: both natural and anthropogenic
forcings) and natural forcings (NAT). The 10 climate model outputs are
selected sincemost of themhave relatively fine spatial resolution. Given that
CMIP6 ALL data ends in 2014, we merge the years 2015 to 2020 from the
intermediate emission scenario (SSP245) with the years 1981 to 2014 from
the ALL simulation since previous studies show that SSP245 and SSP585
have a similar temporal pattern in droughts and temperature during the
period of 2015–202040,41. The examination of ALL and NAT simulations
provides insight into the influence of anthropogenic factors. To ensure
consistency, all the simulationdatasets are regridded into a spatial resolution
of 1° × 1°. For our analysis, we calculate the multi-model average of his-
torical simulations, which helpsmitigate internal variability and emphasizes
the predominantly forced signals in the aggregated model response.

Administrative boundaries and poverty estimates
This study utilizes the latest edition of the Global Subnational Atlas of
Poverty (GSAP) and the classification of countries by income group from
theWorld Bank to characterize global poverty. TheGSAP, updated in 2020,
provides statistically representative poverty estimates for various subna-
tional units, which are typically provinces or states but may include custom
groupings determined by household survey sampling strategies. To ensure
accuracy, small subnational units in the GSAP that are too small for a
0.25° × 0.25° grid are aggregated into larger units that cover at leastfive grids
(approximately 300 km2) within each country. Consequently, isolated small
units like the Cayman Islands are excluded from the analysis. In total,
843 subnational units in 169 countries are covered in this study. In addition,
the World Bank’s country classification leads to four income groups,
including low, lower-middle, upper-middle, and high-income countries.
The four incomegroups are assignedbasedon the gross national incomeper
capita and the classifications in 2020 are used in this study (see Supple-
mentary Fig. 12).

The GSAP offers poverty and income estimates for each subnational
unit, which are derived from the latest available Living Standards

Measurement Survey for the respective country42. We assume hazard
exposure is uniform across income groups within a region since we apply
poverty rates at the subnational administrative level. Such an approachmay
overestimate the exposure of low-income households to increases in
CDHWevents. For example, a significant increase in CDHWoccurrence is
observed in a subnational region of Niger, where nearly 0.68 million people
reside and 30% of population lives in poverty ($1.90 per day). Our estimate
would suggest that 0.2 million poor people are exposed to increases in
CDHW occurrence in this region. However, such estimates are likely to be
overestimated due to the uneven distributions of wealth and CDHWevents
within the region. Therefore, the estimates in this study regarding the
exposure of the population in poverty to CDHW events should be inter-
preted as upper-bound estimates. The study follows the standard World
Bank definition of poverty to calculate poverty rates in each subnational
administrative unit, using daily expenditure thresholds of $1.90, $3.20, and
$5.50. For clarity, all monetary values in this study are denoted in United
States dollars (USD).

Identification of CDHW events
This study focuses on summer CDHW events by integrating heatwave and
drought information. Specifically, a drought event is identified based on the
weekly self-calibrated Palmer Drought Severity Index (scPDSI)43, which
incorporates weekly potential evapotranspiration (PET), weekly total pre-
cipitation, and available water holding capacity as inputs. The PET is esti-
mated based on weekly mean temperature (average of Tmax and Tmin)
through Thornthwaite’s method44. The scPDSI is derived using the char-
acteristics of the local climate calibrated based upon the entire period from
1981 to 2020. A heatwave event is identified based on the abnormally high-
temperature anomalies observed for at least three consecutive days. Here,
the abnormally high-temperature anomalies are defined as the positive
difference between Tmax and its 90th percentile. To account for potential
epidemiological significance45, two successive heatwave events are con-
sidered independent if there is a minimum of four days between them;
otherwise, they are grouped into a single event.

To estimate the CDHW events, we identify time periods of three or
more consecutive days when a heatwave event coincides with extreme
drought weeks46. An extreme drought week is determined when the scPDSI
magnitude falls below the 10th percentile of the weekly values for the entire
study period3. A heatwave event is identified as a spell of at least three
consecutive days when Tmax exceeds the 90th percentile threshold4,45. The
90th percentile of Tmax is calculated separately for each location in the
extended summer seasons (May–October in theNorthernHemisphere, and
November–April in the SouthernHemisphere). Byusing the 95thpercentile
of Tmax, we show the choice of temperature threshold does not affect the
conclusion regarding the unequal historical increases in CDHW events
across the socioeconomic spectrum (Supplementary Fig. 13).

The CDHW events are characterized in terms of their frequency and
severity. The frequency of CDHWevents represents the average number of
annual events during the study period, while the severity is calculated based
on the cumulative sumof daily severity values obtained over the consecutive
days of CDHWevents. Daily severity is determined bymultiplying the daily
standardized values of maximum temperatures with the scPDSI value
observed during the coincident extreme drought week3.

Population data
We utilize the WorldPop Global High Resolution Population dataset
(WPGP) generated by theUniversity of Southampton, theWorldBank, and
other partners. This dataset offers comprehensive global coverage and is
accessible on an annual basis spanning from2000 to 2020.WhileWorldPop
comprises various datasets encompassing poverty, demographics, and
urban change mapping, our focus lies on the high-resolution population
density map (WorldPop-PPP-2020). This particular dataset presents the
population count per individual 3-arcsecond cell in raster format. The data
utilized for this purpose is primarily derived from administrative or census-
based population records that have been disaggregated into grid cells based
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on the spatial arrangement and density of built-up areas derived from
satellite imagery.

Statistical significance
The Mann–Kendall (MK) trend test is used to determine if the frequency
and severity of CDHWshave a statistically significant trend at a significance
level of 0.05 and the Sen’s slope is used to estimate the rate of change. This
approach is a nonparametric test, so the samples are not required to follow a
specific distribution. The null hypothesis in the MK test is that there is no
monotonic trend in the series and the alternative hypothesis is that the data
has a monotonic trend (positive or negative). 500 bootstrap resampling of
Sen’s slope and a two-tailed t-test are used to determine if a statistically
significant difference exists between LIC and HIC regions in terms of his-
torical trends in the frequency and severity of CDHWs.

Formal detection and attribution
We utilize an optimal fingerprinting method to effectively identify and
attribute observed changes in the frequency of CDHWs47. The observed
changes (y) are expressed as a combination of scaled fingerprints (X) of
various external drivers, along with internal climate variability (ε)

y ¼ βX þ ε ð1Þ

To construct the fingerprints, we use the multi-model ensemble mean
of forced simulations while relying on outputs from pre-industrial control
runs to estimate internal climate variability. These fingerprints, both in
terms of frequency and severity, are then pre-processed into nonoverlap-
ping 2-year-mean time series comprising of 20 data samples spanning the
period from 1981 to 2020. The anthropogenically forced signal (ANT) is
determined as the disparity between the multi-model ensemble mean
responses to ALL and NAT (natural) forcings. The regression coefficients
(scaling factors) β are used to scale the fingerprints and optimize their fit to
the observed changes.

In order to fit and test the regression models, two independent esti-
mates are required for the inversed covariance structure of internal climate
variability. Specifically, the pre-industrial control simulations are divided
into 40 nonoverlapping segments and then separated into two sets. These
sets are used to accomplish data pre-whitening and estimate the 5–95%
uncertainty range of scaling factors, respectively. To determine the covar-
iance matrix of internal climate variability, a regularized estimate is con-
ducted to generate a full-rank covariance matrix, thereby mitigating the
underestimation of the lowest eigenvalues that may occur in the original
covariance matrix.

If the scaling factor for a specific external forcing is significantly larger
than zero, the response to that forcing is considered detectable in the
observed changes. A scaling factor of unity indicates that the multi-model
ensemblemeanof forced responses alignswith the observations48.When the
scaling factor is smaller (larger) than one, it signifies that the simulations
overestimate (underestimate) the magnitude of responses to this forcing
compared to the observations. The attributable portion in observed trends
of frequency and severity is calculated as the product of simulated linear
trends for these characteristics and their respective scaling factors. The
5–95% uncertainty range of attributable changes is then determined by
multiplying the ensemble mean forced changes with the uncertainty range
of corresponding scaling factors.

Data availability
All datasets used in this study are publicly available. The ERA5 reanalysis
dataset is available at https://doi.org/10.24381/cds.adbb2d47. The MSWEP
dataset is available at https://www.gloh2o.org/mswep/. The CMIP6 model
outputs are available at https://esgf-node.llnl.gov/projects/cmip6/. The
population density map (WorldPop-2000) is publicly available at https://
hub.worldpop.org/project/categories?id=3. The latest edition of the World
Bank’s GSAP is available at https://maps.worldbank.org.

Code availability
The code used for this study is available at https://github.com/zhangboen/
cdhw_poverty.git.
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