Last Modified: March 14, 2024

Electric Fan

STRENGTH OF EVIDENCE:  

Weak | Medium |

 Strong

Definition

This is the definition of the intervention.

example description text.

Intervention Type: Physiological Cooling. Intervention Level: Individual. Intervention Timescale: During Heat Event.

Case Studies

Case Study

Emerging climate change-related public health challenges in Africa: A case study of the heat-health vulnerability of informal settlement residents in Dar es Salaam, Tanzania

Lorena Pasquini, Christie Godsmark, Lisa van Aardenne, Jessica Lee, Christopher Jack

Learn More

Case Study

Adapting to the impacts of heatwaves in a changing climate in Botkyrka, Sweden

Learn More

Case Study

Addressing heat-related health risks in urban India: Ahmedabad’s Heat Action Plan

Learn More

Related Research and Evaluations

Research

A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes

Mohammad Reza Alizadeh, Jan Adamowski, Mohammad Reza Nikoo, Amir AghaKouchak, Philip Dennison, Mojtaba Sadegh

Using over a century of ground-based observations over the contiguous United States, we show that the frequency of compound dry and hot extremes has increased substantially in the past decades, with an alarming increase in very rare dry-hot extremes. Our results indicate that the area affected by concurrent extremes has also increased significantly. Further, we explore homogeneity (i.e., connectedness) of dry-hot extremes across space. We show that dry-hot extremes have homogeneously enlarged over the past 122 years, pointing to spatial propagation of extreme dryness and heat and increased probability of continental-scale compound extremes. Last, we show an interesting shift between the main driver of dry-hot extremes over time. While meteorological drought was the main driver of dry-hot events in the 1930s, the observed warming trend has become the dominant driver in recent decades. Our results provide a deeper understanding of spatiotemporal variation of compound dry-hot extremes.

Learn More

Research

A comparison and appraisal of a comprehensive range of human thermal climate indices

de Freitas, C. R., Grigorieva, A.

Abstract Numerous human thermal climate indices have been proposed. It is a manifestation of the perceived importance of the thermal environment within the scientific community and a desire to quantify it. Schemes used differ in approach according to the number of variables taken into account, the rationale employed, and the particular design for application. They also vary considerably in type and quality, method used to express output, as well as in several other aspects. In light of this, a three-stage project was undertaken to deliver a comprehensive documentation, classification, and overall evaluation of the full range of existing human thermal climate indices. The first stage of the project produced a comprehensive register of as many thermal indices as could be found, 165 in all. The second stage devised a sorting scheme of these human thermal climate indices that grouped them according to eight primary classification categories. This, the third stage of the project, evaluates the indices. Six evaluation criteria, namely validity, usability, transparency, sophistication, completeness, and scope, are used collectively as evaluation criteria to rate each index scheme. The evaluation criteria are used to assign a score that varies between 1 and 5, 5 being the highest. The indices with the highest in each of the eight primary classification categories are discussed. The work is the final stage of a study of the all human thermal climatic indices that could be found in literature. Others have considered the topic, but this study is the first detailed, genuinely comprehensive, and systematic comparison. The results make it simpler to locate and compare indices. It is now easier for users to reflect on the merits of all available thermal indices and decide which is most suitable for a particular application or investigation.

Learn More

Research

A Note on the Assessment of the Effect of Atmospheric Factors and Components on Humans

Andreas Matzarakis

Abstract: The aim of this contribution is both to demonstrate and to explore the general assessment pertaining to the effects of atmospheric factors on human health and general wellbeing. While humans are aware of such effects, particularly individually, their concrete and synergetic effects with the human physiological system are, comparatively, not well comprehended. In human biometeorological studies and approaches, the aforementioned effects are analyzed in terms of their effect pathways, and the development of single or complex approaches. Recurrently in the existing literature, such approaches are mostly defined and, respectively, targeted as indexes. The evaluation and assessment of similar factors and parameters that present related effects were subsequently put together and quantified. This approach is described as ‘effective complexes’ or components. The most well-known examples are the thermal complex, air pollution complex (which can be divided into the biological (pollen) and anthropogenic (air pollutants) factors), actinic complex, and finally, the recent or rapid weather changes complex. Most of the approaches focus on the negative effects consequential to the established criteria ranging from empirical outputs, to epidemiological studies. As a result, the presented approach does not only include the negative effects or implications on humans. Instead, it also highlights the neutral and positive effects which were acknowledged by the research. The approach deals furthermore with the combined effects of different complexes or components and incorporates different weightings of the factors based on the disclosed effects. In addition, seasonal and exposure factors are deliberated upon to differentiate annual variability factors. Finally, the presented approach builds upon a way in which to cogitate how the complex interactions associated to weather and climate can be quantified in a more appropriate way in the context of human health. The approach aims to be applied for a specific weather forecast enabling the communication and balance between human health factors, and also more encompassing climatic analysis.

Learn More